AN INFINITE-DIMENSIONAL INTEGRAL IDENTITY
FOR THE SEGAL-BARGMANN TRANSFORM

JEREMY J. BECNEL AND AMBAR N. SENGUPTA

(Communicated by Jonathan M. Borwein)

Abstract. We prove an infinite-dimensional integral identity equating the
integral of a function on a subspace of a linear space to the integral of its
Segal-Bargmann transform over the orthogonal complement.

1. Introduction

The purpose of this paper is to prove an integral identity for functions on infinite-
dimensional linear spaces which is an analog of the finite dimensional identity
\[(1.1) \int_V f(x) \, dx = \int_{V^\perp} \hat{f}(k) \, dk \]
where \(\hat{f}\) is the Fourier transform of a regular enough function \(f\) on \(\mathbb{R}^n\), and \(V\) is a
subspace of \(\mathbb{R}^n\). The simplest check on this finite-dimensional identity is obtained
by taking \(f(x) = e^{-2\pi i a \cdot x - \pi x^2}\), where \(a = (a_1, ..., a_n) \in \mathbb{R}^n\) and
\(a \cdot x = \sum_{j=1}^n a_j x_j\), for which \(\hat{f}(k) \overset{\text{def}}{=} \int f(x) e^{-2\pi i k \cdot x} \, dx = e^{-\pi (a + k)^2}\), and then both sides of \((1.1)\) work
out to the common value \(e^{-\pi a_V^2}\), with \(a_V\) being the orthogonal projection of \(a\) on
\(V\). This finite-dimensional identity appears in Hörmander [2] (Theorem 7.1.25),
where it is generalized to submanifolds of \(\mathbb{R}^n\) and several consequences developed.
Our objective in this paper is to prove an infinite-dimensional Gaussian version of
\((1.1)\); possibly, non-linear infinite-dimensional versions also exist.

In the infinite-dimensional setting the role of Lebesgue measure is played by
Gaussian measure, which is meaningful in infinite dimensions. Let \(V\) be a closed
subspace of the real, separable, Hilbert space \(H_0\). Let \(\mu_V\) be the standard Gaussian
measure on \(V\), and \(\mu_{V^\perp}\) the Gaussian measure on \(V^\perp\); technically, these measures
live on a certain space of distributions we denote \(\mathcal{H}'\). The main result of this paper
states that the identity
\[\int_{\mathcal{H}'} F \, d\mu_V = \int_{\mathcal{H}'} SF(ik) \, d\mu_{V^\perp}(k) \]
holds for any test function \(F\) on \(\mathcal{H}'\). Here \(S\) is the Segal-Bargmann transform,
which takes over the role of Fourier transform in infinite-dimensional analysis.

Sections 2 and 3 summarize the essential notions and results necessary to for-
mulate and prove our main result, Theorem 4.1. Section 4 contains the formal
statement and proof of the identity, using some auxiliary results presented in Section 3.

2. Test functions over infinite-dimensional spaces

In this section we summarize the necessary notions concerning test functions on infinite-dimensional linear spaces. We also set up notation to be used in the rest of the paper.

2.1. Test functions and distributions. A distribution over a space X is a continuous linear functional on a space E of appropriately chosen ‘test functions’ over X. For analysis we would also have some measure μ on X and $E = L^2(\mu)$.

The classical example is Schwartz space $S(\mathbb{R}) \subset L^2(\mathbb{R})$. The topology on E is given by some family of norms. Thus, in abstract, the basic framework is a pair

\[(2.1) \quad H \subset H_0, \]

where H_0 is a separable real Hilbert space with norm $|\cdot|_0$ and inner-product $\langle \cdot, \cdot \rangle$ and H is a nuclear space. To form H we take an operator A on H_0 such that there exists an orthonormal basis \{ e_k : $k = 1, 2, 3, \ldots$ \} for H_0 satisfying

1. $Ae_k = \lambda_k e_k$, for $k = 1, 2, 3, \ldots$,
2. $1 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$,
3. $\sum_{k=1}^{\infty} \lambda_k^{-2} < \infty$.

For the Schwartz space $S(\mathbb{R})$, the operator A is the harmonic oscillator Hamiltonian $-\frac{d^2}{dx^2} + \frac{x^2}{4} + \frac{1}{2}$.

Note that A^{-1} is a bounded operator with norm given by

\[(2.2) \quad \rho = \|A^{-1}\| = \frac{1}{\lambda_1}. \]

The condition that $1 < \lambda_1$ is needed when proving continuity of test functions (Theorem 2.2).

Now for each $p \geq 0$ we define the norm

\[(2.3) \quad |x|_p = |A^p x|_0 = \sqrt{\sum_{k \geq 1} \lambda_k^{2p} |\langle x, e_k \rangle|^2} \]

and let

\[(2.4) \quad H_p = \{ x \in H_0 : |x|_p < \infty \}. \]

This is a Hilbert space under the obvious inner-product $\langle \cdot, \cdot \rangle_p$, and

$H_p \subset H_q$ for any $p \geq q$

and the inclusion map $I_{p,p-1} : H_p \hookrightarrow H_{p-1}$ is a Hilbert–Schmidt operator. We then define H to be the projective limit of $\{H_p : p = 0, 1, 2, \ldots\}$, and this gives us

$H = \bigcap_{p \geq 0} H_p \subset \cdots \subset H_2 \subset H_1 \subset H_0$.

Below we describe in brief how a space of test functions is constructed over the dual space H' using this framework.
The symmetric Fock space $F_s(V)$ over a Hilbert space V is the subspace of symmetric tensors in the completion of the tensor algebra $T(V)$ under the inner-product given by

$$\langle a, b \rangle_{T(V)} = \sum_{n=0}^{\infty} n! \langle a_n, b_n \rangle_{V^\otimes n},$$

where $a = \{a_n\}_{n \geq 0}, b = \{b_n\}_{n \geq 0}$ are elements of $T(V)$ with a_n, b_n in the tensor power $V^\otimes n$. Then we have

$$F_s(H) \overset{\text{def}}{=} \cap_{p \geq 0} F_s(H_p) \subset \cdots \subset F_s(H_2) \subset F_s(H_1) \subset F_s(H_0).$$

Thus, the pair (2.1) gives rise to a corresponding pair by taking symmetric Fock spaces:

$$F_s(H) \subset F_s(H_0).$$

The dual space H' of continuous real linear functionals on H is the union

$$H' = \bigcup_{p \geq 0} H_{-p}$$

where H_{-p} is the set of real linear functionals on H which are continuous in the $|\cdot|_p$ norm. Note that H_{-p} is naturally isomorphic to $H'_p \simeq H_p$ and is thus a Hilbert space. We denote the norm on H_{-p} by $|\cdot|_{-p}$. Thus the inner product on H_0 extends to a bilinear pairing, also denoted by $\langle \cdot, \cdot \rangle$, between H_p and H_{-p} with

$$|\langle x, f \rangle| \leq |x|_p |f|_{-p}$$

for all $p \geq 0, x \in H_p$ and $f \in H_{-p}$. We then have a chain of inclusions

$$H_0 \simeq H_{-0} \subset H_{-1} \subset \cdots \subset \bigcup_{p \geq 0} H_{-p} = H'$$

where the inner product on H_0 extends to a bilinear pairing between H and H'. The dual space H' may be equipped with the weak or the strong or the inductive limit topologies.

Fact 2.1. The Borel sigma algebras generated by the weak, strong, and inductive topologies on H' are equivalent.

Although this result is known and has been used implicitly or explicitly in the literature, a complete readily accessible proof can be found in [1].

2.2. **The Gaussian measure μ.** In infinite dimensions the role of Lebesgue measure is played by Gaussian measure. The standard Gaussian measure μ for the pair (2.1) is a Borel measure on H', specified uniquely by

$$\int_{H'} e^{if\hat{\phi}} \, d\mu = e^{-\langle f, \hat{\phi} \rangle / 2}$$

for all $f \in H$, where

$$\hat{\phi} : H' \to \mathbb{R} : \phi \mapsto \phi(f).$$

There is a standard unitary isomorphism, the Wiener-Itô isomorphism or wave-particle duality map, which identifies the complexified Fock space $F_s(H_0)_c$ with $L^2(H', \mu)$. This is uniquely specified by

$$I : F_s(H_0)_c \to L^2(H', \mu) : \text{Exp}(x) \mapsto e^{x - \frac{1}{2} x^2}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(x \in \mathcal{H}, \ x^2 = |x|^2_0, \) and
\[
\text{Exp}(x) = \sum_{n \geq 0} \frac{1}{n!} x^\otimes n.
\]
Indeed, it is readily checked that \(I \) preserves inner-products (the inner-product is as described in (2.5)). Using \(I, \) for each \(\mathcal{F}_s(H_p) \) with \(p \geq 0, \) we have the corresponding space \([H]_p \subset L^2(\mathcal{H}', \mu) \) with the norm \(\| \cdot \|_p \) induced by the norm on the space \(\mathcal{F}_s(H_p). \) From this the chain of spaces (2.6) can be transferred into a chain of function spaces:
\[
[H] = \bigcap_{p \geq 0} [H]_p \subset \cdots \subset [H]_2 \subset [H]_1 \subset [H]_0 = L^2(\mathcal{H}', \mu).
\]
Observe that \([H] \) is a nuclear space with topology induced by the norms \(\{ \| \cdot \|_p; p = 0, 1, 2, \ldots \}. \) Thus, starting with the pair
\[
[\mathcal{H}] \subset H_0
\]
one obtains a corresponding pair
\[
[H] \subset H_0
\]
(2.10) Note that the measure \(\mu \) uses \(H_0 \) as a real Hilbert space.

The identification of \(H_0 \) with \(H_0 \) leads to a complete chain
(2.11) \[
\mathcal{H} = \bigcap_{p \geq 0} H_p \subset \cdots \subset H_1 \subset H_0 \simeq H_\infty \subset H_{-1} \subset \cdots \subset \bigcup_{p \geq 0} H_{-p} = \mathcal{H}'.
\]
In the same way we have a chain for the \('\text{second quantized}' \) spaces \(\mathcal{F}_s(H_q)_c \simeq [H]_q. \)

The unitary isomorphism \(I \) extends to unitary isomorphisms
(2.12) \[
I : \mathcal{F}_s(H_{-p})_c \to [H]_{-p} \overset{\text{def}}{=} [H]_p' \subset [\mathcal{H}]',
\]
for all \(p \geq 0. \) In more detail, for \(a \in \mathcal{F}_s(H_{-p})_c \) the distribution \(I(a) \) is specified by
(2.13) \[
\langle I(a), f \rangle = \langle a, I^{-1}(f) \rangle,
\]
for all \(f \in [H]. \) On the right side here we have the pairing of \(\mathcal{F}_s(H_{-p})_c \) and \(\mathcal{F}_s(H_p)_c \)
induced by the duality pairing of \(H_{-p} \) and \(H_p; \) in particular, the pairings above are complex bilinear (not sesquilinear).

2.3. Properties of test functions. The following theorem summarizes the properties of \([H] \) we need. The results here are standard (see, for instance, Kuo’s monograph [K]), and we compile them for ease of reference.

Theorem 2.2. Every function in \([H] \) is \(\mu \)-almost-everywhere equal to a unique continuous function on \(\mathcal{H}'. \) Moreover, working with these continuous versions,

(1) \([\mathcal{H}] \) is an algebra under pointwise operations;
(2) pointwise addition and multiplication are continuous operations \(([\mathcal{H}] \times [\mathcal{H}]) \to [\mathcal{H}]; \)
(3) for any \(\phi \in \mathcal{H}', \) the evaluation map
\[
\delta_\phi : [\mathcal{H}] \to \mathbb{R} : F \mapsto F(\phi)
\]
is continuous;
(4) the exponentials \(e^{ij-\frac{1}{2}f^2_0}, \) with \(f \) running over \(\mathcal{H}, \) span a dense subspace
of \([\mathcal{H}]. \)
Remark 2.3. Note that (4) immediately gives us that the span of \(e^{zf}\) with \(f\) running over \(\mathcal{H}\) is dense in \([\mathcal{H}]\). It also follows from (4) that the span of \(e^{z^2}\) with \(z\) running over \(\mathcal{H}_c\) is dense in \([\mathcal{H}]\).

A complete characterization of the space \([\mathcal{H}]\) was obtained by Y. J. Lee (see the account in [3] on page 89).

2.4. The Segal-Bargmann transform. The Segal–Bargmann transform takes a function \(F \in L^2(\mathcal{H}', \mu)\) to the function \(SF\) on the complexified space \(\mathcal{H}_c\) given by

\begin{equation}
SF(z) = \int_{\mathcal{H}'} e^{\bar{z} - z^2/2} F \, d\mu, \quad z \in \mathcal{H}_c,
\end{equation}

with notation as follows: if \(z = a + ib\), with \(a, b \in \mathcal{H}\), then

\begin{equation}
\bar{z}(x) \overset{\text{def}}{=} zx \overset{\text{def}}{=} \langle x, a \rangle + i\langle x, b \rangle, \quad \text{for } x \in \mathcal{H}',
\end{equation}

and \(z^2 = zz\), where the product \(zu\) is specified through

\begin{equation}
z u \overset{\text{def}}{=} \langle a, s \rangle - \langle b, t \rangle + i\left(\langle a, t \rangle + \langle b, s \rangle\right)
\end{equation}

if \(z = a + ib\) and \(u = s + it\), where \(a, b, s, t \in \mathcal{H}\).

Let \(\mu_c\) be the Gaussian measure \(\mathcal{H}_c'\) specified by the requirement that

\begin{equation}
\int_{\mathcal{H}_c'} e^{ax + by} \, d\mu_c(x + iy) = e^{(a^2 + b^2)/4}
\end{equation}

for every \(a, b \in \mathcal{H}\). For convenience, let us introduce the renormalized exponential function

\begin{equation}
c_w = e^{\bar{w} - w^2/2}
\end{equation}

for all \(w \in \mathcal{H}_c\). Thankfully, \(c_w\) lies in \(L^2(\mathcal{H}', \mu)\), which means the integrand in (2.14) exists for all \(z \in \mathcal{H}_c\). It is readily checked that for any \(w \in \mathcal{H}_c\)

\begin{equation}
[S c_w](z) = e^{wz}, \quad \text{for all } z \in \mathcal{H}_c.
\end{equation}

Thus we may take \(S c_w\) as a function on \(\mathcal{H}_c'\) given by

\begin{equation}
S c_w = e^{\tilde{w}},
\end{equation}

where now \(\tilde{w}\) is a function on \(\mathcal{H}_c'\) in the natural way. Then \(S c_w \in L^2(\mathcal{H}_c', \mu_c)\) and one has

\(\langle S c_w, S c_u \rangle_{L^2(\mu_c)} = \langle c_w, c_u \rangle_{L^2(\mu)} = e^{w\overline{u}}\).

This shows that \(S\) provides an isometry from the linear span of the exponentials \(c_w\) in \(L^2(\mathcal{H}', \mu)\) onto the linear span of the complex exponentials \(e^{\bar{w}}\) in \(L^2(\mathcal{H}_c', \mu_c)\). Passing to the closure one obtains the Segal-Bargmann unitary isomorphism

\(S : L^2(\mathcal{H}', \mu) \rightarrow Hol^2(\mathcal{H}_c', \mu_c)\)

where \(Hol^2(\mathcal{H}_c', \mu_c)\) is the closed linear span of the complex exponential functions \(e^{\bar{w}}\) in \(L^2(\mathcal{H}_c', \mu_c)\).

An explicit expression for \(SF(z)\) is suggested by (2.14). For any \(F \in [\mathcal{H}]\) and \(z \in \mathcal{H}_c\), we have

\begin{equation}
\langle SF \rangle(z) = \langle I(\text{Exp}(z)), F \rangle
\end{equation}

where the right side is the evaluation of the distribution \(I(\text{Exp}(z))\) on the test function \(F\). Indeed it may be readily checked that if \(SF(z)\) is defined in this way, then \([S c_w](z) = e^{wz}\).
In view of (2.21), it is natural to extend the Segal-Bargmann transform to distributions: for \(\Phi \in [H]' \), define \(S\Phi \) to be the function on \(H_c \) given by
\[
S\Phi(z) \overset{\text{def}}{=} \langle \Phi, I(\text{Exp}(z)) \rangle.
\]

2.5. Images of test functions and distributions under \(S \). The following result (Theorem 8.2 on page 79 in [3]) describes the image \(S([H]') \).

Theorem 2.4 (Potthoff–Streit). Suppose a function \(G \) on \(H_c \) satisfies:
1. for any \(z,w \in H_c \), the function \(G(\alpha z + w) \) is an entire function of \(\alpha \in \mathbb{C} \),
2. there exist nonnegative constants \(A, p, C \) such that
\[
|G(z)| \leq Ce^{A|z|^2_p} \quad \text{for all } z \in H_c.
\]
Then there is a unique distribution \(\Phi \in [H]' \) for which \(G = S\Phi \). Conversely, for any \(\Phi \in [H]' \), the function \(G = S\Phi \) satisfies (1) and (2) above.

Let us note the following bound on \(SF \), for any test function \(F \):

Lemma 2.5. If \(F \in [H]^p \subset L^2(\mu) \), with \(p \in \{0, 1, 2, \ldots\} \) and \(z \in H_c' \), then
\[
|SF(z)| \leq |F|_p e^{1/2|z|^2_p/2}.
\]

Proof. For any \(F \in [H] \) and \(z \in H_c' \):
\[
SF(z) = \langle I(\text{Exp}(z)), F \rangle.
\]
Then letting \(\| \cdot \|_{-p} \) denote the norm in \([H]_{-p} \), we have
\[
|SF(z)| \leq |I(\text{Exp}(z))|_{-p}|F|_p = e^{1/2|z|^2_p/2}|F|_p
\]
where we have used the easily checked expression for the \(p \)-norm of \(\text{Exp}(z) \). \(\square \)

3. Measures corresponding to distributions

A Borel measure \(\nu \) for which \([H] \subset L^1(\nu) \) and the mapping \(F \mapsto \int_{H'} F \, d\nu \) is continuous on \([H] \) is called a Hida measure. A Hida measure induces a distribution \(\tilde{\nu} \) given by
\[
\langle \tilde{\nu}, F \rangle = \int_{H'} F \, d\nu \quad \text{for all } F \in [H].
\]
The following result characterizes Hida measures (see Theorem 15.17, page 333, in [3] for a proof of a more general form of this result):

Theorem 3.1. A measure \(\nu \) on \(H' \) is a Hida measure if and only if for some \(p \geq 1, H_{-p} \) is of full measure and
\[
\int_{H_{-p}} e^{1/2|z|^2_p} \, d\nu(x) < \infty.
\]

Finally we record an observation for use in the next section:

Proposition 3.2. Suppose \(\nu \) is a finite Borel measure on \(H' \) such that
\[
|\int_{H'} e^{z \cdot -z/2} \, d\nu| \leq e^{A|z|^2_p} \quad \text{for every } z \in H_c,
\]
for some constants \(p \geq 0 \) and \(A > 0 \). Then
\[
F \mapsto \int_{H'} F \, d\nu
\]
is a continuous linear functional on \mathcal{H}. In other words, there is a unique distribution $\Phi \in \mathcal{H}'$ for which

$$\langle \Phi, F \rangle = \int_{\mathcal{H}'} F \, d\nu$$

holds for every test function $F \in [\mathcal{H}]$.

Proof. Taking $G(z) = \int_{\mathcal{H}'} e^{z - z^2/2} \, d\nu$ as in Theorem 2.4, the growth bound (3.1) on the S-transform of the finite measure ν implies that there is a unique distribution $\Phi \in \mathcal{H}'$ such that

$$\langle \Phi, e^{i\hat{x}} \rangle = \int_{\mathcal{H}'} e^{i\hat{x}} \, d\nu$$

for every $x \in \mathcal{H}$.

Let $F \in [\mathcal{H}]$, a test function. By Theorem 2.2 there is a sequence of functions F_n, each a linear combination of exponentials of the form $e^{i\hat{x}}$ with $x \in \mathcal{H}$, such that $F_n \to F$ in the topology of $[\mathcal{H}]$. Again, by Theorem 2.2, with the limits being in $[\mathcal{H}]$, and hence also pointwise,

$$\lim_{n \to \infty} |F_n - F|^2 = \lim_{n \to \infty} (F_n - F)(\bar{F}_n - \bar{F}) = 0$$

and

$$\lim_{m \to \infty} |F_n - F_m|^2 = |F_n - F|^2.$$

Also, $\langle \Phi, \psi \rangle = \int \psi \, d\nu$ for every $\psi \in L$, the linear span of the exponentials $e^{i\hat{x}}$ for $x \in \mathcal{H}$. Using these facts and further applications of continuity of multiplication of test functions, we have

$$\int |F_n - F|^2 \, d\nu \leq \liminf_{m \to \infty} \int |F_n - F_m|^2 \, d\nu \quad \text{by Fatou's lemma and (3.3)}$$

$$= \liminf_{m \to \infty} \langle \Phi, |F_n - F_m|^2 \rangle \quad \text{because } |F_n - F_m|^2 \in L$$

$$= \langle \Phi, |F_n - F|^2 \rangle.$$

Letting $n \to \infty$ and using continuity of $\Phi \in [\mathcal{H}]'$ we conclude that

$$F_n \to F \text{ in } L^2(\nu), \text{ as } n \to \infty.$$

Since ν is a finite measure it follows that $\int F_n \, d\nu \to \int F \, d\nu$ and, again by continuity of Φ, we also have $\langle \Phi, F_n \rangle \to \langle \Phi, F \rangle$. This proves that $\int F \, d\nu = \langle \Phi, F \rangle$.

4. The identity

We continue to work with a pair

$$\mathcal{H} \subset H_0,$$

where H_0 is a real separable Hilbert space and \mathcal{H} a dense subspace which is a nuclear space as described earlier. We then have the Gaussian measure μ on \mathcal{H}', and the corresponding space $[\mathcal{H}]_0 = L^2(\mu)$. There is the dense subspace $[\mathcal{H}] \subset L^2(\mu)$, whose elements are our continuous test functions, and $[\mathcal{H}]$ is closed under pointwise addition and multiplication, and contains the linear span of $\{e^{i\hat{x}} : x \in \mathcal{H}\}$ as a dense subspace.
Recall that for \(f \in \mathcal{H} \) we have the evaluation function \(\hat{f} : \mathcal{H}' \to \mathbb{R} : \phi \mapsto \langle \phi, f \rangle \).
If \(V \) is a closed subspace of \(H_0 \), then there is a unique probability measure \(\mu_V \) on \(\mathcal{H}' \) specified through
\[
\int_{\mathcal{H}'} e^{ik \cdot \hat{f}} d\mu_V = e^{-\frac{1}{2}||f||_V^2} \tag{4.1}
\]
for every \(f \in \mathcal{H} \), where \(f_V \) denotes the orthogonal projection of \(f \) onto a closed subspace \(V \) of \(H_0 \). Note that if \(f \in V^\perp \), then the above Fourier transform implies that \(\hat{f} \) is zero \(\mu_V \)-a.e. Thus, in this sense, \(\mu_V \) is a Gaussian measure concentrated on the subspace \(V \). Observe that the characteristic function of \(\mu_V \) immediately implies \(\mu_V \) is a Hida measure by Proposition 3.2.

Our main result is:

Theorem 4.1. Let \(V \) be a closed subspace of the real, separable, Hilbert space \(H_0 \).
Let \(\mu_V \) be the Gaussian measure for \(V \), and \(\mu_V^\perp \) the Gaussian measure for \(V^\perp \), constructed as before. Then, for any test function \(F \in \mathcal{H} \) on \(\mathcal{H}' \), we have
\[
\int_{\mathcal{H}'} F d\mu_V = \int_{\mathcal{H}'} SF(ik) d\mu_V^\perp(k). \tag{4.2}
\]

Proof: Consider first the function \(c_z \) for \(F \), where \(c_z = e^{\frac{z}{2} + \frac{1}{2}z^2} \), where \(z \in \mathcal{H}_c \). Then the left side of (4.2) is
\[
\int_{\mathcal{H}'} c_z d\mu_V = e^{\frac{z}{2} + \frac{1}{2}z^2} e^{-\frac{1}{2}z^2} = e^{-\frac{1}{2}z^2} \phi_k \tag{4.3}
\]
for every \(f \in \mathcal{H} \), where \(\phi_k \) is a closed subspace of \(\mathcal{H}' \) and \(K \) a closed subspace of \(H_0 \), we denote by \(z_K \) the element \(a_K + ib_K \), where \(a_K \) and \(b_K \) are the respective orthogonal projections onto \(K \). The right side of (4.2) is
\[
\int_{\mathcal{H}'} SF_z(ik) d\mu_V^\perp = \int_{\mathcal{H}'} SF_z d\mu_V^\perp(k) = e^{-\frac{1}{2}z^2} \phi_k \tag{4.4}
\]
Thus our identity (4.3) holds for the functions \(c_z \), and hence for \(F \) in the linear span \(L \) of these functions. Now take \(F \) to be any test function in \([\mathcal{H}]\). Then, by Theorem 2.2, there is a sequence of functions \(F_n \in L \) which converges in the topology of \([\mathcal{H}]\) to \(F \) and hence also pointwise. Moreover, for every \(p \geq 0 \)
\[
\lim_{n \to \infty} F_n = F \quad \text{in} \quad \| \cdot \|_p \text{-norm.}
\]
From the identity
\[
\int_{\mathcal{H}'} F_n d\mu_V = \int_{\mathcal{H}'} SF_n(ik) d\mu_V^\perp(k) \tag{4.5}
\]
Proposition 3.2 implies that as \(n \to \infty \) the left side converges to \(\int_{\mathcal{H}'} F d\mu_V \). On the other hand, by the bound in Lemma 2.3, the integrands on the right are bounded by \(\|F_n\|_p e^{\frac{|k|^2}{2}} \), for every \(t \geq 0 \). As noted before \(\mu_V^\perp \) is a Hida measure, and so by Theorem 4.1 there is a \(p \geq 1 \) for which
\[
\int_{\mathcal{H}'} e^{\frac{|k|^2}{2}} d\mu_V^\perp(k) < \infty. \tag{4.6}
\]
Combining these facts we see that the dominated convergence applies to the right side of (4.5) and the latter converges to \(\int_{\mathcal{H}'} SF(ik) d\mu_V^\perp(k) \). This completes the proof of the identity. \(\square \)
Acknowledgments

We are very thankful to the anonymous referee for the detailed comments and suggestions.

References

Department of Mathematics and Statistics, Stephen F. Austin State University, Nacogdoches, Texas 75962-3040
E-mail address: becneljj@sfasu.edu

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
E-mail address: sengupta@math.lsu.edu