Extremal extensions for the sum of nonnegative selfadjoint relations
HTML articles powered by AMS MathViewer
- by Seppo Hassi, Adrian Sandovici, Henk de Snoo and Henrik Winkler
- Proc. Amer. Math. Soc. 135 (2007), 3193-3204
- DOI: https://doi.org/10.1090/S0002-9939-07-08827-2
- Published electronically: May 14, 2007
- PDF | Request permission
Abstract:
The sum $A+B$ of two nonnegative selfadjoint relations (multi-valued operators) $A$ and $B$ is a nonnegative relation. The class of all extremal extensions of the sum $A+B$ is characterized as products of relations via an auxiliary Hilbert space associated with $A$ and $B$. The so-called form sum extension of $A+B$ is a nonnegative selfadjoint extension, which is constructed via a closed quadratic form associated with $A$ and $B$. Its connection to the class of extremal extensions is investigated and a criterion for its extremality is established, involving a nontrivial dependence on $A$ and $B$.References
- Yu. M. Arlinskiĭ, S. Hassi, Z. Sebestyén, and H. S. V. de Snoo, On the class of extremal extensions of a nonnegative operator, Recent advances in operator theory and related topics (Szeged, 1999) Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 41–81. MR 1902794
- Yu. M. Arlinskiĭ and È. R. Tsekanovskiĭ, Quasiselfadjoint contractive extensions of a Hermitian contraction, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 50 (1988), 9–16, i (Russian); English transl., J. Soviet Math. 49 (1990), no. 6, 1241–1247. MR 975668, DOI 10.1007/BF02209165
- Earl A. Coddington, Extension theory of formally normal and symmetric subspaces, Memoirs of the American Mathematical Society, No. 134, American Mathematical Society, Providence, R.I., 1973. MR 0477855
- Bálint Farkas and Máté Matolcsi, Commutation properties of the form sum of positive, symmetric operators, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 777–790. MR 1876466
- B. Farkas and M. Matolcsi, Positive forms on Banach spaces, Acta Math. Hungar. 99 (2003), no. 1-2, 43–55. MR 1973084, DOI 10.1023/A:1024501211008
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- S. Hassi, M. M. Malamud, and H. S. V. de Snoo, “On Kreĭn’s extension theory of nonnegative operators”, Math. Nachr., 274/275 (2004), 40–73.
- S. Hassi, A. Sandovici, H. S. V. de Snoo, and H. Winkler, Form sums of nonnegative selfadjoint operators, Acta Math. Hungar. 111 (2006), no. 1-2, 81–105. MR 2188974, DOI 10.1007/s10474-006-0036-6
- S. Hassi, A. Sandovici, H.S.V. de Snoo, and H. Winkler, “A general factorization approach to the extension theory of nonnegative operators and relations”, J. Operator Theory, to appear.
- Zoltán Sebestyén and Jan Stochel, Restrictions of positive selfadjoint operators, Acta Sci. Math. (Szeged) 55 (1991), no. 1-2, 149–154. MR 1124953
- Z. Sebestyén and J. Stochel, On products of unbounded operators, Acta Math. Hungar. 100 (2003), no. 1-2, 105–129. MR 1984863, DOI 10.1023/A:1024660318703
Bibliographic Information
- Seppo Hassi
- Affiliation: Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland
- Email: sha@uwasa.fi
- Adrian Sandovici
- Affiliation: Colegiul Naţional “Petru Rareş”, 610101, Str. Ştefan cel Mare, Nr. 4, Piatra Neamt, Romania
- Email: adrian.sandovici@yahoo.com
- Henk de Snoo
- Affiliation: Department of Mathematics and Computing Science, University of Groningen, P.O. Box 800, 9700 AV Groningen, Nederland
- Email: desnoo@math.rug.nl
- Henrik Winkler
- Affiliation: Institut für Mathematik, MA 6-4, Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Deutschland
- Email: winkler@math.tu-berlin.de
- Received by editor(s): March 27, 2006
- Received by editor(s) in revised form: June 15, 2006
- Published electronically: May 14, 2007
- Additional Notes: The fourth author was supported by the “Fond zur Förderung der wissenschaftlichen Forschung” (FWF, Austria), grant number P15540-N05.
- Communicated by: Joseph A. Ball
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3193-3204
- MSC (2000): Primary 47A57, 47B25; Secondary 47A55, 47B65
- DOI: https://doi.org/10.1090/S0002-9939-07-08827-2
- MathSciNet review: 2322750