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ON THE CHARACTERISTIC POLYNOMIAL
OF THE ALMOST MATHIEU OPERATOR

MICHAEL P. LAMOUREUX AND JAMES A. MINGO

(Communicated by Joseph A. Ball)

Abstract. Let Aθ be the rotation C*-algebra for angle θ. For θ = p/q with
p and q relatively prime, Aθ is the sub-C*-algebra of Mq(C(T2)) generated by

a pair of unitaries u and v satisfying uv = e2πiθvu. Let

hθ,λ = u + u−1 + λ/2(v + v−1)

be the almost Mathieu operator. By proving an identity of rational functions
we show that for q even, the constant term in the characteristic polynomial of

hθ,λ is (−1)q/2(1 + (λ/2)q) − (zq
1 + z−q

1 + (λ/2)q(zq
2 + z−q

2 )).

1. Introduction

Let θ, λ, and ψ be real numbers with λ positive. The second order difference
operator Hθ,λ,ψ on �2(Z) given by

Hθ,λ,ψ(ξ)(n) = ξ(n + 1) + ξ(n − 1) + λ cos(2πnθ + ψ)ξ(n)

for ξ ∈ �2(Z) is called the almost Mathieu operator. Hθ,λ,ψ is a discrete Schrödinger
operator which models an electron moving in a crystal lattice in a plane perpen-
dicular to a magnetic field.

An object of much study has been the spectrum σ(θ, λ) =
⋃

ψ σ(Hθ,λ,ψ). In [H],
Hofstadter calculated σ(θ, 2) for θ = p/q and 1 ≤ p < q ≤ 50. The remarkable
pattern he found is called Hofstadter’s butterfly. For irrational θ, a longstanding
concern has been the connectedness and Lebesgue measure of σ(θ, λ) and the la-
belling of the gaps, about which quite a bit is now known (see [AJ], [AK], and [P]
for spectacular recent advances as well as [AVMS], [BS], [B], [CEY], [LT] for earlier
work). In addition there has been numerical work on computing the spectrum to
high accuracy for large q [A1, A2, L].
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Let Aθ be the rotation C*-algebra (see [B]). For θ = p/q with p and q relatively
prime and ρ = e2πθ let

uθ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1

0
. . .
. . . 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠ and vθ =

⎛⎜⎜⎜⎜⎜⎝
ρ

ρ2

. . .
ρq−1

1

⎞⎟⎟⎟⎟⎟⎠ ,

i.e. uθ cyclically permutes the elements of the standard basis and vθ is a diagonal
operator. Then define u, v : T

2 → Mq(C) by u(z1, z2) = z1uθ and v(z1, z2) = z2vθ.
Then u v = ρv u and Aθ is the C*-algebra generated by u and v (see [B]). The
operator hθ,λ = u + u−1 + λ/2(v + v−1) contains all the spectral information of
Hθ,λ,ψ in that Sp(hθ,λ) = σθ,λ :=

⋃
ψ Sp(Hθ,λ,ψ).

The main tool in the analysis of σθ,λ is ∆θ,λ, the discrete analogue of the dis-
criminant. For θ = p/q, ∆θ,λ(x) = Tr(A1(x) · · ·Aq(x)) where

Ak(x) =
(

x − λ cos(2πkp/q + π/(2q)) −1
1 0

)
.

Below are the first few values of this polynomial. Note that the form of ∆θ,λ so
displayed depends only on the denominator q; however, ξθ = 2 cos(2πp/q) depends
on the numerator p.

q ∆θ,2(x) for θ = p/q and ξθ = 2 cos(2πθ)

2 x2 − 4

3 x3 − 6x

4 x4 − 8x2 + 4

5 x5 − 10x3 + 5(3 − ξθ)x

6 x6 − 12x4 + 6(5 − ξθ)x
2 − 4

7 x7 − 14x5 + 7(7 − ξθ)x
3 − 7(6 − 2ξθ + 2ξ2θ)x

8 x8 − 16x6 + 8(9 − ξθ)x
4 − 8(12 − 4ξθ + 2ξ2θ)x

2 + 4

9 x9 − 18x7 + 9(11 − ξθ)x
5 − 9(31/3 − 6ξθ + 2ξ2θ)x

3 + 9(14 − 8ξθ + 3ξ2θ)x

One can calculate for k = 1, 2 the coefficient of xq−2k; for k = 3 the formula is
conjectural (from numerical evidence). A deeper understanding of the structure of
∆θ.λ would be quite interesting.

k coefficient of xq−2k in ∆θ,λ (µ = λ/2)

1 −q(1 + µq)

2 q
(

1
q−2

(
q−2
2

)
µ4 + (q − 4 − ξθ)µ

2 + 1
q−2

(
q−2
2

))
3 −q( 1

q−3

(
q−3
3

)
µ6 + (1 +

(
q−5
2

)
− (q − 6)ξθ + ξ2θ)µ

4

+ (1 +
(

q−5
2

)
− (q − 6)ξθ + ξ2θ)µ

2 + 1
q−3

(
q−3
3

)
)

The connection with the characteristic polynomial of hθ,λ is given by

(1) det(xIq − hθ,λ(z1, z2)) = ∆θ,λ(x) + zq
1 + z−q

1 + (λ/2)q(zq
2 + z−q

2 )
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and thus σθ,λ = ∆−1
θ,λ[−2(1+(λ/2)q), 2(1+(λ/2)q)]. Indeed, ∆θ,λ(x) can be written

as a determinant (cf. Toda [T, §4])

(2) ∆p/q,λ(x) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 1 1
1 α2 1

1
. . . . . .
. . . . . .

1
1 1 αq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 2
{

(−1)q + (λ/2)q

}

where all the other entries are 0 and αk = x − λ cos(2πkp/q + π/(2q)). Since

(3) ∆p/q,λ(−x) = (−1)q∆p/q,λ(x)

the coefficient of xq−(2k+1) is 0 for 0 ≤ k < q/2.
The main result of the paper asserts that for al = 2 cos(2πlp/q) and 1 ≤ k < q/2

we have ∑
i1,i2,...,iq−2k

ai1ai2 · · · aiq−2k
= 0

where the summation is over all subsets of {1, 2, 3, . . . , q} obtained by deleting
k pairs of adjacent elements – counting 1 and k as adjacent. This is proved by
establishing the following identity for k ≥ 3 and q ≥ 2k − 1:

q−2(k−1)∑
i1=1

· · ·
q∑

ik=ik−1+2

k∏
j=1

(x−ij + xij )−1

(x−ij−1 + xij+1)
=

(x−q − xq)
2k−2∏

i=k+1

(x−q+i − xq−i)

k∏
i=1

(x−2i − x2i)
k−2∏
i=−1

(x−q+i + xq−i)

+
(x−1 + x1)−1(x−q + xq)−1

(x−2 + x2)(x−q−1 + xq+1)

q−2(k−2)∑
i1=3

· · ·
q−2∑

ik−2=ik−3+2

k−2∏
j=1

(x−ij + xij )−1

(x−ij−1 + xij+1)
.

We then use this to show that for al = 2 cos(2πlp/q)

det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1 1 1

1 a2
. . .

. . . . . . . . .
. . . . . . 1

1 1 aq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎧⎪⎨⎪⎩
0 q ≡ 0 (mod 4),
4 q ≡ 1, 3 (mod 4),
−8 q ≡ 2 (mod 4).

From this we show that the constant term (i.e. the coefficient of x0) in
det(xIq − hθ,λ(z1, z2)) is

(−1)q/22(1 + (λ/2)q)) − (zq
1 + z−q

1 + (λ/2)q(zq
2 + z−q

2 ))

when q is even. When q is odd it follows from (3) that the coefficient of x0 is
−(zq

1 + z−q
1 + (λ/2)q(zq

2 + z−q
2 )).

Similar, though simpler, reasoning shows that the coefficient of xq−2 is
−q(1 + λ/2) and that the coefficient of xq−4 is

(λ/2)4q(q − 3)/2 + (λ/2)2q(q − 4 − 2 cos(2πθ)) + q(q − 3)/2.
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2. The main theorem

Let us use the following notation: let a1, . . . , an be elements of a commutative
ring and let

(a1, a2, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0
1 a2 1

. . . a3
. . .

. . . . . . 1
0 1 an

∣∣∣∣∣∣∣∣∣∣∣∣
and

[[a1, a2, . . . , an]] =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 1
1 a2 1

. . . a3
. . .

. . . . . . 1
1 1 an

∣∣∣∣∣∣∣∣∣∣∣∣
.

The first matrix is a tridiagonal matrix with 1’s on the sub and super-diagonal and
0’s elsewhere. The second matrix is the same tridiagonal matrix with in addition
1’s in the upper right and lower left corners; all other entries are 0. Expanding
along the bottom row we have

(4) [[a1, a2, . . . , an]] = (a1, a2, . . . , an) − (a2, a3, . . . , an−1) + 2(−1)n−1

and

(5) [[−a1,−a2, . . . ,−an]] = (−1)n[[a1, a2, . . . , an]] + 2(−1)n−1.

Rewriting equation (2) we have

(6) ∆p/q,λ(x) = [[a1, . . . , aq]] + 2((−1)q + (λ/2)q).

Notation 2.1. (i) For 0 ≤ k ≤ n/2, let S
[
n
k

]
= {I ⊂ {1, 2, . . . , n} | |I| =

n − 2k and I is obtained from {1, 2, . . . , n} by deleting k pairs of adjacent
elements}. S

[
2k
k

]
= {Ø}, S

[
2k+1

k

]
=
{
{1}, {3}, {5}, . . . , {2k + 1}

}
, . . . ,

S
[
n
0

]
=
{
{1, 2, 3, . . . , n}

}
.

(ii) For 0 ≤ k ≤ (n− 1)/2, let S′[n
k

]
= {I ⊂ {2, 3, . . . , n} | |I| = n− 2k − 1 and

I is obtained from {2, 3, . . . , n} by deleting k pairs of adjacent elements}.
S′[2k+1

k

]
= Ø, S′[2k+2

k

]
=
{
{2}, {4}, {6}, . . . , {2k + 2}

}
, . . . , S′[n

0

]
=

{2, 3, . . . , n}.
(iii) For S a collection of subsets of {1, 2, . . . , n − 1} let S ∨ {n} = {I ∪ {n} |

I ∈ S}.
(iv) For 0 ≤ k ≤ n/2, let S̃

[
n
k

]
= {I ⊂ {1, 2, 3, . . . , n} | |I| = n − 2k and I is

obtained from {1, 2, . . . , n} by deleting k pairs of adjacent elements, count-
ing {n, 1} as an adjacent pair}. S̃

[
2k
k

]
= Ø, S̃

[
2k+1

k

]
=
{
{1}, {2}, . . . , {n}

}
,

. . . , S̃
[
n
0

]
= {1, 2, 3, . . . , n}.

(v) For a1, a2, a3, . . . , an elements of a commutative ring, and I = {i1, i2, i3, . . . ,
ik} ⊂ {1, 2, 3, . . . , n}, let aI = ai1ai2ai3 · · · ain

. We shall adopt the conven-
tion that aØ = 1.
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Part (ii) of the next proposition goes back to Sylvester’s original paper on con-
tinuants [S]; part (iv) is a straightforward extension of this. For the reader’s con-
venience we present a proof.

Proposition 2.2. (i) Suppose 1 ≤ k < n/2; then S
[
n
k

]
=
(
S
[
n−1

k

]
∨ {n}

)
∪

S
[
n−2
k−1

]
.

(ii)

[n/2]∑
k=0

(−1)k
∑

I∈S[nk]
aI = an

[(n−1)/2]∑
k=0

(−1)k
∑

I∈S[n−1
k ]

aI −
[(n−2)/2]∑

k=0

(−1)k
∑

I∈S[n−2
k ]

aI .

(iii) S̃
[
n
k

]
= S

[
n
k

]
∪ S′[n−1

k−1

]
for 1 ≤ k ≤ n/2.

(iv) When n is odd,

[n/2]∑
k=0

(−1)k
∑

I∈S̃[nk]
aI =

[n/2]∑
k=0

(−1)k
∑

I∈S[nk]
aI −

[(n−1)/2]∑
k=0

(−1)k
∑

I∈S′[n−1
k ]

aI .

When n is even,
[n/2]∑
k=0

(−1)k
∑

I∈S̃[nk]
aI =

[n/2]∑
k=0

(−1)k
∑

I∈S[nk]
aI + (−1)n/2 −

[(n−1)/2]∑
k=0

(−1)k
∑

I∈S′[n−1
k ]

aI .

Proof. (i) Let I ∈ S
[
n
k

]
. If n 	∈ I, then n−1 	∈ I and so I ∈ S

[
n−2
k−1

]
. Suppose n ∈ I.

Let K = {1, 2, 3, . . . , n} \ I and İ = I \ {n}. Then İ = {1, 2, 3, . . . n − 1} \ K; so
İ ∈ S

[
n−1

k

]
. Hence I = İ ∪ {n} ∈ S

[
n−1

k

]
∨ {n}.

(ii) Let us assume that n = 2m is even. The same idea works for odd n, but the
proof is slightly simpler. Observe

[n/2]∑
k=0

(−1)k
∑

I∈S[nk]
aI =

∑
I∈S[n0]

aI +
m−1∑
k=1

(−1)k
∑

I∈S[nk]
aI + (−1)m

=
∑

I∈S[n0]
aI + an

m−1∑
k=1

(−1)k
∑

I∈S[n−1
k ]

aI +
m−1∑
k=1

(−1)k
∑

I∈S[n−2
k−1]

aI + (−1)m

= an

{ ∑
I∈S[n−1

0 ]
aI +

m−1∑
k=1

(−1)k
∑

I∈S[n−1
k ]

aI

}
+

m−1∑
k=1

(−1)k
∑

I∈S[n−2
k−1]

aI + (−1)m

= an

m−1∑
k=0

(−1)k
∑

I∈S[n−1
k ]

aI −
m−1∑
k=0

(−1)k
∑

I∈S[n−2
k ]

aI

= an

[(n−1)/2]∑
k=0

(−1)k
∑

I∈S[n−1
k ]

aI −
[(n−2)/2]∑

k=0

(−1)k
∑

I∈S[n−2
k ]

aI .

(iii) For I ∈ S̃
[
n
k

]
let K1 = {1, 2, 3, . . . , n} \ I and K2 = {2, 3, . . . , n} \ I. Also,

min{i | i ∈ K1} is odd if and only if I ∈ S
[
n
k

]
and min{i | i ∈ K2} is even if and

only if I ∈ S′[n−1
k−1

]
.
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(iv) Suppose n = 2m. Then

[n/2]∑
k=0

(−1)k
∑

I∈S̃[nk]
aI =

∑
I∈S̃[n0]

aI +
m−1∑
k=1

(−1)k
∑

I∈S̃[nk]
aI + (−1)m

∑
I∈S̃[n

m]
aI

=

( ∑
I∈S[n0]

aI +
m∑

k=1

(−1)k
∑

I∈S[nk]
aI

)
+

m∑
k=1

(−1)k
∑

I∈S′[n−1
k−1]

aI + (−1)m

=
m∑

k=0

(−1)k
∑

I∈S[nk]
aI −

m−1∑
k=0

(−1)k
∑

I∈S′[n−1
k ]

aI + (−1)m.

The case of n odd is similar. �

Corollary 2.3. Let a1, a2, . . . , an be elements of a commutative ring.

(i) (a1, . . . , an) =
[n/2]∑
k=0

(−1)k
∑

I∈S[nk]
aI .

(ii)

[[a1, . . . , an]] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[n/2]∑
k=0

(−1)k
∑

I∈S̃[nk]
aI + 2, n odd,

[n/2]∑
k=0

(−1)k
∑

I∈S̃[nk]
aI − 2 + (−1)n/2, n even.

Proof. (i) For n = 1 the left hand side and the right hand side equal a1. Both sides
satisfy the same recurrence relation.

(ii) By equation (6)

[[a1, . . . , an]] = (a1, . . . , an) − (a2, . . . , an−1) − (−1)n2

so the result now follows from (i) and Proposition 2.2 (iii). �

Proposition 2.4. Let 1 ≤ p < q be relatively prime, θ = p/q, and ak = 2 cos(2πkθ).
Then

a1a2 · · · aq =

⎧⎪⎨⎪⎩
0 q ≡ 0 (mod 4),
2 q ≡ 1, 3 (mod 4),

−4 q ≡ 2 (mod 4).

Proof. Let Tq be the qth Chebyshev polynomial of the first kind. The constant
term of Tq is 0 for q odd and (−1)q/2 for q even. The result now follows from the
identity (see e.g. [R, §1.2])

q∏
i=1

(x − ai) = 2(Tq(x/2) − 1). �

The statement of the main theorem follows. Its proof will be given at the end of
the next section.
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Theorem 2.5. Let 1 ≤ p < q be relatively prime, ak = 2 cos(2πkθ), and θ = p/q.
For 1 ≤ k < q/2, ∑

I∈S̃[q
k]

aI = 0.

Corollary 2.6. Let 1 ≤ p < q be relatively prime, θ = p/q, λ > 0, and ak =
λ cos(2πkθ). Then

[[a1, a2, . . . , aq]] =

⎧⎪⎨⎪⎩
0 q ≡ 0 (mod 4),

2(1 + (λ/2)q) q ≡ 1, 3 (mod 4),
−4(1 + (λ/2)q) q ≡ 2 (mod 4)

and ∆θ,λ(0) = (−1)q/22(1 + (λ/2)q) for q even.

Proof. Suppose q is even. By Theorem 2.5 all the terms of

[q/2]∑
k=0

(−1)k
∑

I∈S̃[q
k]

aI

are zero except the terms for k = 0 and k = q/2. The term for k = 0 is a1a2 · · · aq.
The term for k = q/2 is (−1)q/2. Thus when q = 4m we have by Proposition 2.4

[[a1, a2, . . . , aq]] = a1a2 · · · aq − (−1)q2 + (−1)q/22 = 0,

and when q = 4m + 2,

[[a1, a2, . . . , aq]] = a1a2 · · · aq − (−1)q2 + (−1)q/22 = −4(1 + (λ/2)q).

To obtain the final claim we apply equation (6). �

From the corollary and equation (1) we have the theorem which corrects an error
in [CEY, p. 232].

Theorem 2.7. The coefficient of x0 in det(xIq − hθ,λ(z1, z2)) is

− (zq
1 + z−q

1 + (λ/2)q(zq
2 + z−q

2 )) + (−1)q/22(1 + (λ/2)q)

when q is even and −(zq
1 + z−q

1 + (λ/2)q(zq
2 + z−q

2 )) when q is odd.

3. Proof of the main theorem

Theorem 3.1. Suppose a1, a2, . . . , aq are elements in a commutative ring and let
aq+1 = a1. For I ⊂ {1, 2, . . . , q}, let Ic = {1, 2, . . . , q} \ I be the complement of I
in {1, 2, . . . , q}. Then

∑
I∈S̃[q

k]
aIc =

q−2(k−1)∑
i1=1

q−2(k−2)∑
i2=i1+2

· · ·
q∑

ik=ik−1+2

k∏
j=1

aij
aij+1

− a1a2

[
q−2(k−2)∑

i1=3

q−2(k−3)∑
i2=i1+2

· · ·
q−2∑

ik−2=ik−3+2

k−2∏
j=1

aij
aij+1

]
aqaq+1.
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Proof. Recall that elements of S̃
[
q
k

]
are obtained by deleting k adjacent pairs {i, i+

1} from {1, 2, . . . , q}, counting q and 1 as adjacent. So if Ic ∈ S̃
[
q
k

]
, then I =

{i1, j1, i2, j2, . . . , ik, jk} with 1 ≤ i1, j1 = i1 + 1 < i2, . . . , jk−1 = ik−1 + 1 < ik ≤ q
and either jk = ik + 1 if ik < q or jk = 1 if ik = q.

Now let T
[
q
k

]
= { {i1, j1, i2, j2, . . . , ik, jk} | 1 ≤ i1, j1 = i1 + 1 < i2, . . . , jk−1 =

ik−1 + 1 < ik ≤ q, jk = ik + 1 }. Define φ : {1, 2, . . . , q, q + 1} → {1, 2, . . . , q} by
φ(q + 1) = 1 and φ(i) = i for i ≤ q. Then aφ(I) = aI for I ∈ T

[
q
k

]
.

If I = {i1, j1, i2, j2, . . . , ik, jk} and i1 = 1 and ik = q, then φ(I)c 	∈ S̃
[
q
k

]
because

φ(jk) = φ(i1) = 1 and the pairs must be disjoint. So let T ′[q
k

]
= { {1, 2, i1, j1, . . . ,

ik−1, jk−1, q, q + 1} | 3 ≤ i1, j1 = i1 + 1 < i2, . . . , ik−1 ≤ q − 2, jk−1 = ik−1 + 1 }.
For I ∈ T

[
q
k

]
\ T ′[q

k

]
, φ(I)c ∈ S̃

[
q
k

]
and φ : T

[
q
k

]
\ T ′[q

k

]
→ S̃

[
q
k

]
is a bijection.

This with the identity aφ(I) = aI proves the theorem. �

Lemma 3.2. (i) For q ≥ 1,
q∑

i=1

(x−i + xi)−1(x−i−1 + xi+1)−1 =
x−q − xq

(x−2 − x2)(x−q−1 + xq+1)
.

(ii) For k ≥ 1

2k∏
i=1

(x−i + xi)−1 =
k∏

i=1

(x−i − xi)
(x−2i − x2i)(x−(k+i) + xk+i)

.

Proof. (i) One checks directly that the formula holds when q = 1; then (i) follows
by induction on q.

(ii) follows from the identity

x−i − xi

(x−2i − x2i)(x−k−i + xk+i)
=

1
(x−i + xi)(x−k−i + xk+i)

. �

Corollary 3.3. For q ≥ 5

(x−1 + x)−1(x−2 + x2)−1

(x−q + xq)(x−q−1 + xq+1)

q−2∑
i=3

(x−i + xi)−1(x−i−1 + xi+1)−1

=
(x−3 − x3)(x−q+4 − xq−4)

(x−4 − x4)(x−6 − x6)(x−q+1 + xq−1)(x−q + xq)(x−q−1 + xq+1)
.

Proof. By Lemma 3.2 (i)

q−2∑
i=3

(x + −i + xi)−1(x−i−1 + xi+1)−1

=
x−q+2 − xq−2

(x−2 − x2)(x−q+1 + xq−1)
− x−2 − x2

(x−2 − x2)(x−3 + x3)

=
(x−q+4 − xq−4)(x−1 + x)

(x−2 − x2)(x−3 + x3)(x−q+1 + xq−1)
.

The result then follows by multiplying both sides by

(x−1 + x)(x−2 + x2)(x−3 + x3)(x−q+1 + xq−1). �
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Theorem 3.4. For k ≥ 1 and q ≥ 2k − 1,
q−2(k−1)∑

i1=1

q−2(k−2)∑
i2=i1+2

· · ·
q∑

ik=ik−1+2

k∏
j=1

(x−ij + xij )−1(x−ij−1 + xij+1)−1

(7) =
∏2k−2

i=k−1(x
−(q−i) − xq−i)∏k

i=1(x−2i − x2i)
∏k−2

i=−1(x−(q−i) + xq−i)
.

Proof. We prove the equation by induction on k. When k = 1 the equation holds
by Lemma 3.2 (i). Lemma 3.2 (ii) shows that for arbitrary k the formula holds for
q = 2k − 1; so we fix k and proceed by induction on q. Let Sk,q and Tk,q denote
respectively the left hand and right hand sides of equation (7).

If we write Sk,q as a sum of two terms, the first in which ik < q and the second
when ik = q, we see that Sk,q satisfies the recurrence relation

Sk,q = Sk,q−1 + (x−q + xq)−1(x−q−1 + xq+1)−1Sk−1,q−2.

Thus we have only to show that Tk,q satisfies the same relation. Now

Tk,q−1 =
∏2k−1

i=k (x−(q−i) − xq−i)∏k
i=1(x−2i − x2i)

∏k−1
i=0 (x−(q−i) + xq−i)

and

Tk−1,q−2 =
∏2k−2

i=k (x−(q−i) − xq−i)∏k−1
i=1 (x−2i − x2i)

∏k−1
i=1 (x−(q−i) + xq−i)

.

The proof of the recurrence relation for Tk,q is thus reduced to verifying that

(x−(q−(k−1)) − xq−(k−1))(x−(q−(k−1)) + xq−(k−1))
(x−q−1 + xq+1)(x−q + xq)

=
x−(q−(2k−1)) − xq−(2k−1)

x−q + xq
+

x−2k − x2k

(x−q + xq)(x−q−1 + xq+1)
. �

Theorem 3.5. For k ≥ 3 and q ≥ 2k − 1,

(x−1 + x1)−1(x−2 + x2)−1(x−q + xq)−1(x−q−1 + xq+1)−1

×
q−2(k−2)∑

i1=3

q−2(k−3)∑
i2=i1+2

· · ·
q−2∑

ik−2=ik−3+2

k−2∏
j=1

(x−ij + xij )−1(x−ij−1 + xij+1)−1

=
(x−k+1 − xk−1)(x−k − xk)

∏2k−2
i=k+1(x

−q+i − xq−i)∏k
i=1(x−2i − x2i)

∏k−2
i=−1(x−q+i + xq−i)

.(8)

Proof. Let us denote the left and right hand sides of the identity by Sk,q and Tk,q

respectively. By Corollary 3.3 S3,q = T3,q. We write Sk,q as the sum of two terms:
in the first ik−2 < q − 2 and in the second ik−2 − q − 2. As in the proof of the
previous theorem we obtain a recurrence relation, in this case:

Sk,q = Sk,q−1(x−q−1 + xq+1)−1(x−q+1 + xq−1)

+ Sk−1,q−2(x−q + xq)−1(x−q−1 + xq+1)−1.

It is routine to verify that Tk,q satisfies the same recurrence relation. �

Subtracting equation (8) from equation (7) yields.
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Corollary 3.6.

q−2(k−1)∑
i1=1

q−2(k−2)∑
i2=i1+2

· · ·
q∑

ik=ik−1+2

k∏
j=1

(x−ij + xij )−1(x−ij−1 + xij+1)−1

− (x−1 + x1)−1(x−2 + x2)−1(x−q + xq)−1(x−q−1 + xq+1)−1

×
q−2(k−2)∑

i1=3

q−2(k−3)∑
i2=i1+2

· · ·
q−2∑

ik−2=ik−3+2

k−2∏
j=1

(x−ij + xij )−1(x−ij−1 + xij+1)−1

=

(xq − x−q)
2k−2∏

i=k+1

(x−q+i − xq−i)

q∏
k=1

(x2i − x−2i)
k−2∏
i=−1

(x−q+i + xq−i)

.(9)

Proof of Theorem 2.5. We recall that 1 ≤ p < q and p and q are relatively prime.
We set θ = p/q and aj = 2 cos(2πjθ). We shall split the proof into two cases.

Case 1: q 	≡ 0 (mod 4). When q 	≡ 0 (mod 4) aj 	= 0 for all j; moreover when
x = e2πiθ, x4i 	= 1 and x2(q−i) 	= −1 for all i. Thus the denominator on the right
hand side of (9) does not vanish but the numerator does. Hence by Theorem 3.1∑

I∈S̃[q
k]

(aIc)−1 = 0.

Upon multiplying by a1a2 · · · aq we obtain that∑
I∈S̃[q

k]
aI = a1a2 · · · aq

∑
I∈S̃[q

k]
(aIc)−1 = 0.

Case 2: q ≡ 0 (mod 4). Again we wish to show that
∑

I∈S̃[q
k] aI = 0 and so

we must multiply both sides of equation (9) by
∏q

i=1(x
−i + xi) and evaluate at

x = e2πiθ.
The denominator of the right hand side of (9) is zero when x4q = 1 or x2(q−j) =

−1, i.e. when i = j = q/4; the corresponding factors are x−q/2 −xq/2 and x−3q/4 +
x3q/4 respectively.

Apart from the factor x−q −xq, the numerator of the right hand side of equation
(9) is zero only when x2(q−i) = 1, i.e. when i = q/2. This produces the factor
x−q/2 − xq/2 which cancels one of the zeros in the denominator. The other zero is
cancelled when we multiply by

∏q
i=1(x

−i+xi). Hence the product of
∏q

i=1(x
−i+xi)

and the right side of (9) is zero when x = e2πiθ. �
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