The link of the germ of a semi-algebraic metric space
HTML articles powered by AMS MathViewer
- by Guillaume Valette
- Proc. Amer. Math. Soc. 135 (2007), 3083-3090
- DOI: https://doi.org/10.1090/S0002-9939-07-08878-8
- Published electronically: June 20, 2007
- PDF | Request permission
Abstract:
In this paper we investigate the metric properties of semi-algebraic germs. More precisely we introduce a counterpart to the notion of link for semi-algebraic metric spaces, which is often used to study the topology. We prove that it totally determines the metric type of the germ. We give a nice consequence for semi-algebraically bi-Lipschitz homeomorphic semi-algebraic germs.References
- L. Birbrair, Local bi-Lipschitz classification of $2$-dimensional semialgebraic sets, Houston J. Math. 25 (1999), no. 3, 453–472. MR 1730886
- Lev Birbrair and Jean-Paul Brasselet, Metric homology, Comm. Pure Appl. Math. 53 (2000), no. 11, 1434–1447. MR 1773415, DOI 10.1002/1097-0312(200011)53:11<1434::AID-CPA5>3.3.CO;2-J
- Lev Birbrair and Jean-Paul Brasselet, Metric homology for isolated conical singularities, Bull. Sci. Math. 126 (2002), no. 2, 87–95 (English, with English and French summaries). MR 1906238, DOI 10.1016/S0007-4497(01)01085-5
- J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- M. Coste, An introduction to O-minimal Geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Instituti Editoriali e Poligrafici Internazionali, Pisa (2000).
- Michel Coste and Krzysztof Kurdyka, On the link of a stratum in a real algebraic set, Topology 31 (1992), no. 2, 323–336. MR 1167174, DOI 10.1016/0040-9383(92)90025-D
- L. van den Dries and P. Speissegger, O-minimal preparation theorems, Model theory and applications, Quad. Mat., vol. 11, Aracne, Rome, 2002, pp. 87–116. MR 2159715
- Tadeusz Mostowski, Lipschitz equisingularity, Dissertationes Math. (Rozprawy Mat.) 243 (1985), 46. MR 808226
- Masahiro Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics, vol. 150, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1463945, DOI 10.1007/978-1-4612-2008-4
- Guillaume Valette, Lipschitz triangulations, Illinois J. Math. 49 (2005), no. 3, 953–979. MR 2210270
- Guillaume Valette, A bilipschitz version of Hardt’s theorem, C. R. Math. Acad. Sci. Paris 340 (2005), no. 12, 895–900 (English, with English and French summaries). MR 2152275, DOI 10.1016/j.crma.2005.05.004
Bibliographic Information
- Guillaume Valette
- Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków, Poland
- Email: Guillaume.Valette@im.uj.edu.pl
- Received by editor(s): September 23, 2005
- Received by editor(s) in revised form: July 14, 2006
- Published electronically: June 20, 2007
- Additional Notes: This paper was partially supported by the RAAG Network
- Communicated by: David Preiss
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3083-3090
- MSC (2000): Primary 14P10, 32B25, 154E40
- DOI: https://doi.org/10.1090/S0002-9939-07-08878-8
- MathSciNet review: 2322737