On Littlewood-Paley functions
HTML articles powered by AMS MathViewer
- by Leslie C. Cheng
- Proc. Amer. Math. Soc. 135 (2007), 3241-3247
- DOI: https://doi.org/10.1090/S0002-9939-07-08917-4
- Published electronically: June 20, 2007
- PDF | Request permission
Abstract:
We prove that, for a compactly supported $L^q$ function $\Phi$ with vanishing integral on $\mathbf {R}^n$, the corresponding square function operator $S_\Phi$ is bounded on $L^p$ for $|1/p - 1/2| < \min \{(q-1)/2, 1/2\}$.References
- A. Al-Salman, H. Al-Qassem, L. C. Cheng, and Y. Pan, $L^p$ bounds for the function of Marcinkiewicz, Math. Res. Lett. 9 (2002), no. 5-6, 697–700. MR 1906071, DOI 10.4310/MRL.2002.v9.n5.a11
- A. Benedek, A.-P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356–365. MR 133653, DOI 10.1073/pnas.48.3.356
- Bergh, J. and Löfström, J., Interpolation Spaces, Springer-Verlag, 1976.
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Ronald R. Coifman and Yves Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (French). With an English summary. MR 518170
- Ding, Y., On Marcinkiewicz integral, Proc. of the conference “Singular Integrals and Related Topics, III”, Osaka, Japan (2001), 28–38.
- Yong Ding, Dashan Fan, and Yibiao Pan, On Littlewood-Paley functions and singular integrals, Hokkaido Math. J. 29 (2000), no. 3, 537–552. MR 1795491, DOI 10.14492/hokmj/1350912990
- Javier Duoandikoetxea and José L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561. MR 837527, DOI 10.1007/BF01388746
- Javier Duoandikoetxea and Edurne Seijo, Weighted inequalities for rough square functions through extrapolation, Studia Math. 149 (2002), no. 3, 239–252. MR 1890732, DOI 10.4064/sm149-3-2
- Jean-Lin Journé, Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón, Lecture Notes in Mathematics, vol. 994, Springer-Verlag, Berlin, 1983. MR 706075, DOI 10.1007/BFb0061458
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Shuichi Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), no. 2, 199–211. MR 1642027, DOI 10.1017/S0004972700032172
- E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430–466. MR 112932, DOI 10.1090/S0002-9947-1958-0112932-2
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- T. Walsh, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203–217. (errata insert). MR 315368, DOI 10.4064/sm-44-3-203-217
Bibliographic Information
- Leslie C. Cheng
- Affiliation: Department of Mathematics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010
- Email: lcheng@brynmawr.edu
- Received by editor(s): June 27, 2006
- Published electronically: June 20, 2007
- Communicated by: Michael T. Lacey
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 3241-3247
- MSC (2000): Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-07-08917-4
- MathSciNet review: 2322755