ON THE SUM FORMULA FOR THE q-ANALOGUE
OF NON-STRIC T MULTIPLE ZETA VALUES

YASUO OHNO AND JUN-ICHI OKUDA

(Communicated by Jonathan M. Borwein)

Abstract. In this article, the q-analogues of the linear relations of non-strict
multiple zeta values called “the sum formula” and “the cyclic sum formula”
are established.

1. Introduction

For any multi-index $k = (k_1, k_2, \ldots, k_r)$ ($k_i \in \mathbb{Z}$, $k_i > 0$), the weight $\text{wt}(k)$
and depth $\text{dep}(k)$ of k are by definition the integers $k = k_1 + k_2 + \cdots + k_r$ and
r respectively. We denote by $I(k, r)$ the set of multi-indices k of weight k, and
depth r, and by $I_0(k, r)$ the subset of admissible indices, i.e., indices with the extra
requirement that $k_1 \geq 2$.

For an admissible index (k_1, \ldots, k_r), the multiple zeta value $\zeta(k_1, \ldots, k_r)$ (MZV, for
short) and the non-strict multiple zeta value are defined as follows:

$$\zeta(k_1, \ldots, k_r) := \sum_{n_1 > n_2 > \cdots > n_r > 0} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}},$$

$$\zeta^*(k_1, \ldots, k_r) := \sum_{n_1 \geq n_2 \geq \cdots \geq n_r \geq 1} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}}.$$

The latter is also called multiple zeta-star value (MZSV, for short) in $[1][19]$. Both
values can be written as a \mathbb{Z}-linear combination of each other.

These values are known to be related to many objects of mathematics and
quantum physics, for example, connection formulæ for hypergeometric functions $[20]$,
knot invariants $[16]$, Feynman diagrams $[15]$ and so on. They also appear in the
coefficients of the Drinfel’d’s KZ-associator $[7]$. The properties of the KZ-associator
are related to the representations of the fundamental group of a configuration space.

Study of MZSVs has been initiated by Leonhard Euler $[8]$, and he got many
results including the well-known formula:

$$\zeta^*(k - 1, 1) = \frac{k + 1}{2} \zeta(k) - \frac{1}{2} \sum_{r=2}^{k-2} \zeta(r) \zeta(k - r).$$

Received by the editors March 1, 2006.

2000 Mathematics Subject Classification. Primary 11M41, 33D15, 11B65, 05A30, 11M06.

Key words and phrases. Multiple zeta values, non-strict multiple zeta values, multiple zeta
star values, sum formula, q-analogue, q-series, basic hypergeometric function.

The first author was partly supported by Grant-in-Aid for Young Scientists (B) No. 18740020
and the second author was partly supported by Grant-in-Aid for Young Scientists (B) No. 17740026
from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

©2007 American Mathematical Society
Reverts to public domain 28 years from publication

It seems that Euler wanted to give an answer to the question, “When are MZSVs in the algebra generated by Riemann zeta values $\zeta(k)$?” It is a basic and an important question even now. The next two equivalent formulae were conjectured in [11], and proved by Andrew Granville [10] and Don Zagier independently.

Sum Formula. For positive integers $0 < r < k$, there holds

$$
(1) \quad \sum_{k \in I_0(k, r)} \zeta(k) = \zeta(k), \quad \sum_{k \in I_0(k, r)} \zeta^*(k) = \left(\frac{k-1}{r-1}\right) \zeta(k).
$$

These formulae are so fundamental that they are re-proved again and again [2, 12, 13, 17, 18, 20, 22]. For the MZSV case, there are two more proofs. One is (1)

$$
(2) \quad \sum_{i=1}^{k-r-2} \sum_{j=0}^{k-r-1} \zeta^*(k_1 - j, k_i + 1, \ldots, k_r, k_1, \ldots, k_{i-1}, j + 1) = k \zeta(k + 1),
$$

where the empty sum means zero.

Generating Function. For the multiple polylogarithms with equality defined by

$$
\text{Li}_{k_1, \ldots, k_r}^*(t) := \sum_{n_1 \geq \cdots \geq n_r \geq 1} \frac{t^{n_1}}{n_1^{k_1} \cdots n_r^{k_r}},
$$

the generating function and its special value at $t = 1$ are expressed as follows:

$$
(3) \quad \sum_{k>r>0} \sum_{k \in I_0(k, r)} \text{Li}^*_k(t) x^{k-r-1} y^{r-1} = \frac{1}{1-x-y} \int_0^t (1-s)^{-y} \text{$_2F_1$}(1-x-y, 1-y, 2-x-y; s) ds,
$$

where $\text{$_2F_1$}$ is Gauß’s hypergeometric series.

In this article, we define the q-analogues of MZSVs and construct the q-analogues of the above formulae.

For $0 < q < 1$ and $\alpha \in \mathbb{C}$, $[\alpha]$ is defined by $[\alpha] := (1-q^\alpha)/(1-q)$ q^{-1} α. The q-Pochhammer symbol is defined by $(\alpha; q)_{\infty} := \prod_{n=0}^{\infty} (1 - \alpha q^n)$ and $(\alpha; q)_n := (\alpha; q)_{\infty}/(\alpha q^n; q)_{\infty}$ for any integer n. Then the q-analogues of MZV are defined by

$$
\zeta_q[k_1, \ldots, k_r] := \sum_{n_1 > \cdots > n_r > 0} \frac{q^{n_1(k_1-1)+\cdots+n_r(k_r-1)}}{|n_1|^{k_1} \cdots |n_r|^{k_r}}.
$$

A q-analogue of the relations for MZVs are considered in [3, 5, 6, 21]. A finite q-analogue of $\zeta^*(k)$ is studied in [4].
Definition 1. For any admissible index \((k_1, \ldots, k_r)\), the \(q\)-analogue of MZSV and the multiple polylogarithm with equality are as follows:

\[
\zeta_q^* [k_1, \ldots, k_r] := \sum_{n_1 \geq \cdots \geq n_r \geq 1} \frac{q^{n_1 (k_1 - 1) + \cdots + n_r (k_r - 1)}}{[n_1]_{k_1} \cdots [n_r]_{k_r}} ,
\]

\[
\text{Li}_{k_1, \ldots, k_r}^* [t] := \sum_{n_1 \geq \cdots \geq n_r \geq 1} \frac{t^{n_1}}{[n_1]_{k_1} \cdots [n_r]_{k_r}} .
\]

As the \(q\)-analogue of (2), we have the next formula:

Theorem 1 (Cyclic Sum Formula). For \((k_1, \ldots, k_r) \in I_0(k, r)\),

\[
\sum_{i=1}^{r} \sum_{j=0}^{k_i-2} \zeta_q^* [k_i - j, k_{i+1}, \ldots, k_r, k_1, \ldots, k_{i-1}, j + 1] = \sum_{l=0}^{r} (k - l) \binom{r}{l} (1 - q)^l \zeta_q [k - l + 1] ,
\]

where the empty sum means zero.

Moreover, there also holds the \(q\)-analogue of (3):

Theorem 2 (Generating Function of Multiple Polylogarithms).

\[
\sum_{k \geq r > 0} \left\{ \sum_{k \in I_0(k, r)} \text{Li}_k^* [t] \right\} u^{k-r-1} v^{r-1} = \frac{1}{1 - u - v} \int_0^\infty \frac{t \phi_1 (a, b, aq; s, q) \, dq}{(bs; q)_\infty} d_q s ,
\]

where \(2\phi_1\) is Heine’s \(q\)-hypergeometric series [9], \(q^{-a-1} = \frac{1}{1 - q(a+v)}\) and \(b = \frac{1 - (1-q)u}{1 - (1-q)(a+v)}\), and the integral is the Jackson \(q\)-integral [9]:

\[
\int_0^\infty f(s) \, dq s := (1-q)t \sum_{n=0}^\infty f(q^n t) q^n .
\]

As the corollary of these theorems, we obtain the \(q\)-analogue of (4):

Corollary 3 (Sum Formula). For integers \(0 < r < k\),

\[
\sum_{k \in I_0(k, r)} \zeta_q^* [k] = \frac{1}{k-1} \binom{k-1}{r-1} \sum_{l=0}^{r-1} \binom{r-1}{l} (k - 1 - l) (1 - q)^l \zeta_q [k - l] .
\]
Summing up these equations by rotating the indices, and we have the theorem.

To prove (3), by using the equation

$$\frac{1}{n_1} q^{n_1 - n_{r+1}} = \left(\frac{1}{n_1 - n_{r+1}} - \frac{1}{n_1} \right) \frac{1}{n_{r+1}}.$$

we have

$$T(k_1, k_2, \ldots, k_r)$$

$$= \sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1, \ n_1 \neq n_{r+1}} q^{n_1(k_1-1)+n_2(k_2-1)+\cdots+n_{r+1}(k_{r+1}-1)} \left(\frac{1}{n_1 - n_{r+1}} - \frac{1}{n_1} \right) \frac{1}{n_{r+1}}$$

$$= \sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1, \ n_1 \neq n_{r+1}} q^{n_1(k_1-2)+n_2(k_2-1)+\cdots+n_{r+1}(k_{r+1}-1)} q^{n_1}$$

$$= \sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1, \ n_1 \neq n_{r+1}} q^{n_1(k_1-3)+n_2(k_2-1)+\cdots+n_{r+1}(k_{r+1}-1)+n_{r+1}(2-1)} q^{n_1}$$

$$= \cdots \cdots \cdots$$

$$= \sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1, \ n_1 \neq n_{r+1}} q^{n_2(k_2-1)+\cdots+n_{r}(k_{r}-1)+n_{r+1}(k_{r+1}-2)} q^{n_1}$$

$$= \sum_{j=0}^{k_1-2} \zeta_q[k_1-j, k_2, \ldots, k_r, j+1] + (k_1-1) \sum_{n_1=1}^{\infty} \frac{q^{n(k-r)}[n]}{[n+1]}.$$

By using the equation

$$\frac{1}{n_1} q^{n_1} = \left(\frac{q^{n_1 - n_{r+1}}}{n_1 - n_{r+1}} - \frac{q^{n_1 - n_{r+1}}}{n_1} \right) \frac{q^{n_{r+1}}}{n_{r+1}}.$$
the first term is
\[
\sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1 \atop n_1 \neq n_{r+1}} q^{n_2(k_2-1)+\cdots+n_r(k_r-1)+n_{r+1}(k_{r+1}-1)} \frac{q^{n_1}}{[n_1]^1 [n_2]^2 \cdots [n_r]^r [n_{r+1}]^{r+1}} \frac{q^{n_1}}{n_1 - n_{r+1}}
\]
\[
= \sum_{n_2 \geq \cdots \geq n_{r+2} \geq 1 \atop n_2 \neq n_{r+2}} q^{n_2(k_2-1)+\cdots+n_r(k_r-1)+n_{r+2}(k_{r+2}-1)} \times \left(\sum_{n_1=n_2}^{n_1=n_2} q^{n_1-n_{r+1}} \frac{q^{n_1}}{n_1} - q^{n_1} \frac{q^{n_1}}{n_{r+1}} \right)
+ \sum_{n_2=1}^{\infty} q^{n_2(k_2+\cdots+k_r+k_{r+1}-r)} \left(\sum_{n_1=n_2+1}^{\infty} q^{n_1-n_2} \frac{q^{n_1}}{n_1} - \frac{q^{n_1}}{n_2} \right)
\]
\[
= \sum_{n_2 \geq \cdots \geq n_{r+2} \geq 1 \atop n_2 \neq n_{r+2}} q^{n_2(k_2-1)+\cdots+n_r(k_r-1)+n_{r+2}(k_{r+2}-1)} \frac{q^{n_2-n_{r+2}}}{[n_2]^2 \cdots [n_r]^r [n_{r+2}]^{r+2}} \frac{q^{n_2-n_{r+2}}}{n_2 - n_{r+2}} + \sum_{n=1}^{\infty} q^{n(k-r+1)} \frac{1}{[n]^{k+1}}.
\]

Moreover, by substituting the equation
\[
\sum_{n=1}^{\infty} q^{n(k-m)} \frac{1}{[n]^{k+1}} = \sum_{l=0}^{m} \binom{m}{l} (1-q)^l \zeta_q[k-l+1],
\]
we obtain \(6\).

Furthermore, for \(k = (k_1, \ldots, k_r) \in I_0(k, r)\), we set
\[
J_0(k) := \bigcup_{i=1}^{r} \bigcup_{j=0}^{k_{i-2}} \{(k_i - j, k_{i+1}, \ldots, k_r, k_1, \ldots, k_{i-1}, j + 1) \in I_0(k + 1, r + 1)\}
\]
Then
\[
I_0(k + 1, r + 1) = \bigcup_{k \in I_0(k, r)} J_0(k), \quad \text{and} \quad J_0(k) \cap J_0(k') = \emptyset \quad \text{if} \quad k \neq k'.
\]

From \(4\) we have
\[
\sum_{k' \in J_0(k)} \zeta_q^* [k'] = \frac{\#J_0(k)}{k-r} \sum_{l=0}^{r} (k-l) \binom{r}{l} (1-q)^l \zeta_q[k-l+1],
\]
and summing up about \(k\) we obtain
\[
\sum_{k' \in I_0(k+1, r+1)} \zeta_q^* [k'] = \sum_{k \in I_0(k, r)} \sum_{k' \in J_0(k)} \zeta_q^* [k']
= \frac{\#I_0(k + 1, r + 1)}{k-r} \sum_{l=0}^{r} (k-l) \binom{r}{l} (1-q)^l \zeta_q[k-l+1]
= \frac{1}{k-r} \sum_{l=0}^{r} (k-l) \binom{r}{l} (1-q)^l \zeta_q[k-l+1].
\]
Thus we have Corollary \(3\)
We denote the generating functions of Li_k^* as follows:

$$
\Psi^*(u,v,t,q) := \sum_{k \geq r > 0} \left(\sum_{k \in l(k,r)} \text{Li}_k^*[t] \right) u^{k-r} v^{r-1},
$$

$$
\Psi_0^*(u,v,t,q) := \sum_{k > r > 0} \left(\sum_{k \in l_0(k,r)} \text{Li}_k^*[t] \right) u^{k-r-1} v^{r-1}.
$$

To investigate the above generating functions we use the q-differential equation, where the q-differential operator D_q is defined by

$$(D_q f)(t) := \frac{f(t) - f(qt)}{t - qt}.$$

From the q-differential equation for Li_k^*,

$$D_q \text{Li}_{k_1,k_2,...,k_r}^*[t] = \begin{cases}
\frac{1}{t} \text{Li}_{k_1-1,k_2,...,k_r}^*[t] & (k_1 \geq 2), \\
\frac{1}{t-1} \text{Li}_{k_2,...,k_r}^*[t] & (k_1 = 1 \text{ and } r \geq 2), \\
\frac{1}{1-t} & (k_1 = 1 \text{ and } r = 1),
\end{cases}$$

Ψ^* and Ψ_0^* satisfy the following q-differential equations:

$$D_q \Psi_0^*(u,v,t,q) = \frac{1}{t} \Psi^*(u,v,t,q),$$

$$D_q (\Psi^* - u\Psi_0^*)(u,v,t,q) = \frac{1}{1-t} + \frac{1}{t(1-t)} v\Psi^*(u,v,t,q).$$

By eliminating Ψ^* from the above equations, we have that Ψ_0^* satisfies the inhomogeneous linear q-differential equation of second order:

$$(7) \quad q t(1-t) D_q^2 f + \{(1-t)(1-u) - v\} D_q f = 1.$$

Ψ_0^* is characterized as the regular solution of (7) around the origin and the value at the origin is 0.

We must find such a solution of (7) in another way. At first we put $g := D_q f$ and solve the equation

$$(8) \quad q(t)(1-t)D_q g + \{(1-t)(1-u) - v\} g = 1,$$

by variation of parameter. We choose $C_0 t^a (t; q)_\infty / (bt; q)_\infty$ for the solution of the homogeneous equation

$$q(t)(1-t)D_q h + \{(1-t)(1-u) - v\} h = 0,$$

where $q^{-a-1} = \frac{1}{1 - (1-q)(u+v)}$, $b = \frac{1 - (1-q)u}{1 - (1-q)(u+v)}$ and $C_0 \in \mathbb{C}$. We assume that

$$g(t) = C(t) t^a (t; q)_\infty / (bt; q)_\infty,$$

and substitute this into (8); then we have

$$C'(t) = q^{-a-1} t^{-a-1} (bt; q)_\infty / (t; q)_\infty.$$

The Jackson integral of $C'(t)$ is as follows:

$$
\int_0^t q^{-a-1-s-a-1} \frac{(bq; q)_\infty}{(s; q)_\infty} d_q s = q^{-a-1} \int_0^t s^{-a-1} \sum_{n=0}^{\infty} \frac{(bq; q)_n}{(q; q)_n} s^n \, d_q s
$$

$$
= q^{-a-1} \sum_{n=0}^{\infty} \frac{(bq; q)_n}{(q; q)_n} \frac{t^{n-a}}{[n-a]}
$$

$$
= \frac{t^{-a}}{1 - u - v} \phi_1(q^{-a}, bq, q^{-a+1}; t, q),
$$

where the first equality is by virtue of the q-binomial theorem $[9]$. So we obtain the solution of (8) which is regular at the origin:

$$
g(t) = \frac{1}{1 - u - v} \frac{(t; q)_\infty}{(bt; q)_\infty} \phi_1(q^{-a}, bq, q^{-a+1}; t, q).
$$

We consider the Jackson integral again and get the solution of (7):

$$
f(t) = \frac{1}{1 - u - v} \int_0^t \frac{(s; q)_\infty}{(bs; q)_\infty} \phi_1(q^{-a}, bq, q^{-a+1}; s, q) d_q s.
$$

By executing the Jackson integral, we have

$$
f(t) = \frac{1}{1 - u - v} \sum_{n=0}^{\infty} \frac{(1 - q^{-a})(bq; q)_n}{(1 - q^{n-a})(q; q)_n} \int_0^t \frac{(s; q)_\infty}{(bs; q)_\infty} \phi_1(q^{-a}, bq, q^{-a+1}; q^{n+1}; t, q) d_q s
$$

$$
= \frac{1}{1 - u - v} \sum_{n=0}^{\infty} \frac{(1 - q^{-a})(bq; q)_n}{(1 - q^{n-a})(q; q)_n} (1 - q) t^{n+1} \sum_{j=0}^{\infty} q^{j(n+1)} \phi_1(bt, q^{-a}, bq, q^{-a+1}; q^{n+1}, q^{-a}, q^{-a+1}, t, q)
$$

(9)

which is zero at $t = 0$. Thus we obtain the theorem.

In the same way as $[21]$, the special value of Li^q and the generating function are expressed by the combination of the q-analogue of MZSVs: Substitute $t = q$ and the value is

$$
\text{Li}^q_{k_1, k_2, \ldots, k_r} [q] = \sum_{a_1=0}^{k_1-2} \sum_{a_2=0}^{k_2-1} \cdots \sum_{a_r=0}^{k_r-1} \binom{k_1-2}{a_1} \binom{k_2-1}{a_2} \cdots \binom{k_r-1}{a_r}
$$

$$
\times (1 - q)^{k_1 + \cdots + k_r - a_1 - \cdots - a_r} \zeta_q [a_1, a_2, \ldots, a_r],
$$

and the generating function is

$$
\Phi^q(u, v; q, q) = \frac{1}{1 + (1 - q)x} \sum_{k > r > 0} \left\{ \sum_{k \in I_0(k, r)} \zeta_q^{r}[k] \right\} x^{k-r-1} y^{r-1},
$$

where $x = \frac{1}{1 - (1 - q)u}$ and $y = \frac{1}{1 - (1 - q)u}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
On the other hand, by substituting $t = q$ to \([1]\),

\[
\Psi^r(u, v; q, q) = \frac{1}{1 - u - v} \sum_{n=0}^{\infty} \frac{(1 - q^{-a})(bq; q)_n}{(1 - q^{n-a})(q; q)_n} (1 - q)q^{n+1} \frac{(q; q)_\infty}{(bq; q)_\infty} \\
\times \sum_{j=0}^{\infty} q^{j(n+1)} \frac{(bq; q)_j}{(q; q)_j} \\
= \frac{1 - q}{1 - u - v} \sum_{n=0}^{\infty} \frac{(1 - q^{-a})(bq; q)_n}{(1 - q^{n-a})(q; q)_n} q^{n+1} \frac{(q; q)_\infty}{(bq; q)_\infty} (bq^{n+2}; q) \\
= \frac{1 - q}{1 - u - v} \sum_{n=0}^{\infty} \frac{(1 - q^{-a})(1 - bq^{n+1})}{(1 - q^{n-a})} q^{n+1} \\
= \sum_{n=1}^{\infty} \frac{q^n}{[n] - (u + v)} \frac{1 - (1 - q)(u + v)}{[n] - (1 - q)u - v} \\
= \frac{1}{1 + (1 - q)x} \sum_{n=1}^{\infty} q^n \frac{1 - (1 - q)y}{([n] - y)([n] - xq^n - y)}.
\]

Hence we have

\[
\sum_{k>r>0} \left\{ \sum_{k \in I_0(k, r)} \zeta^r_s[k] \right\} x^{k-r-1} y^{r-1} = \sum_{n=1}^{\infty} q^n \frac{1 - (1 - q)y}{([n] - y)([n] - xq^n - y)},
\]

and expanding the right hand by geometric series, we obtain Corollary \(\text{3}\).

ACKNOWLEDGMENTS

The authors express their deep gratitude to Professor Yoshihiro Takeyama for his helpful suggestions.

REFERENCES

7. V. G. Drinfel’d, *On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$*, Algebra i Analiz **2** (1990), no. 4, 149–181. MR1080203 (92f:16047)

Department of Mathematics, Kinki University, Higashi-Osaka 577-8502, Japan

Current address: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

E-mail address: ohno@math.kindai.ac.jp

Department of Mathematical Sciences, Science and Engineering, Waseda University, Tokyo 169-8555, Japan

E-mail address: okuda@gm.math.waseda.ac.jp