On the sum formula for the $q$-analogue of non-strict multiple zeta values
HTML articles powered by AMS MathViewer
- by Yasuo Ohno and Jun-Ichi Okuda
- Proc. Amer. Math. Soc. 135 (2007), 3029-3037
- DOI: https://doi.org/10.1090/S0002-9939-07-08994-0
- Published electronically: June 19, 2007
- PDF | Request permission
Abstract:
In this article, the $q$-analogues of the linear relations of non-strict multiple zeta values called “the sum formula” and “the cyclic sum formula” are established.References
- Takashi Aoki and Yasuo Ohno, Sum relations for multiple zeta values and connection formulas for the Gauss hypergeometric functions, Publ. Res. Inst. Math. Sci. 41 (2005), no. 2, 329–337. MR 2138027
- Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in mathematics, A K Peters, Ltd., Natick, MA, 2004. Computational paths to discovery. MR 2051473
- David M. Bradley, On the sum formula for multiple $q$-zeta values, Rocky Mountain J. Math. (to appear).
- David M. Bradley, Duality for finite multiple harmonic $q$-series, Discrete Math. 300 (2005), no. 1-3, 44–56. MR 2170113, DOI 10.1016/j.disc.2005.06.008
- David M. Bradley, Multiple $q$-zeta values, J. Algebra 283 (2005), no. 2, 752–798. MR 2111222, DOI 10.1016/j.jalgebra.2004.09.017
- David M. Bradley, A $q$-analog of Euler’s decomposition formula for the double zeta function, Int. J. Math. Math. Sci. 21 (2005), 3453–3458. MR 2206867, DOI 10.1155/IJMMS.2005.3453
- V. G. Drinfel′d, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$, Algebra i Analiz 2 (1990), no. 4, 149–181 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 4, 829–860. MR 1080203
- Leonhard Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20 (1775), 140–186, Reprinted in “Opera Omnia," ser. I, 15, B. G. Teubner, Berlin, 1927, pp. 217–267.
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251
- Andrew Granville, A decomposition of Riemann’s zeta-function, Analytic number theory (Kyoto, 1996) London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 95–101. MR 1694987, DOI 10.1017/CBO9780511666179.009
- Michael E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), no. 2, 275–290. MR 1141796
- Michael E. Hoffman and Yasuo Ohno, Relations of multiple zeta values and their algebraic expression, J. Algebra 262 (2003), no. 2, 332–347. MR 1971042, DOI 10.1016/S0021-8693(03)00016-4
- Kentaro Ihara, Masanobu Kaneko, and Don Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142 (2006), no. 2, 307–338. MR 2218898, DOI 10.1112/S0010437X0500182X
- Yasuhiro Kombu, Multiple zeta values and hypergeometric differential equations, Master’s thesis, Kinki University, 2003.
- Dirk Kreimer, Knots and Feynman diagrams, Cambridge Lecture Notes in Physics, vol. 13, Cambridge University Press, Cambridge, 2000. MR 1778151, DOI 10.1017/CBO9780511564024
- Tu Quoc Thang Le and Jun Murakami, Kontsevich’s integral for the Homfly polynomial and relations between values of multiple zeta functions, Topology Appl. 62 (1995), no. 2, 193–206. MR 1320252, DOI 10.1016/0166-8641(94)00054-7
- Hiroyuki Ochiai, unpublished manuscript, 1997.
- Yasuo Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), no. 1, 39–43. MR 1670544, DOI 10.1006/jnth.1998.2314
- Yasuo Ohno and Noriko Wakabayashi, Cyclic sum of multiple zeta values, Acta Arith. 123 (2006), no. 3, 289–295. MR 2263259, DOI 10.4064/aa123-3-5
- Yasuo Ohno and Don Zagier, Multiple zeta values of fixed weight, depth, and height, Indag. Math. (N.S.) 12 (2001), no. 4, 483–487. MR 1908876, DOI 10.1016/S0019-3577(01)80037-9
- Jun-ichi Okuda and Yoshihiro Takeyama, On relations for the $q$-multiple zeta values, to appear in Ramanujan Journal, preprint, 2004.
- Jun-ichi Okuda and Kimio Ueno, Relations for multiple zeta values and Mellin transforms of multiple polylogarithms, Publ. Res. Inst. Math. Sci. 40 (2004), no. 2, 537–564. MR 2049646
- Don Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 497–512. MR 1341859
Bibliographic Information
- Yasuo Ohno
- Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka 577-8502, Japan
- Address at time of publication: Max-Planck-Institute für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- Email: ohno@math.kindai.ac.jp
- Jun-Ichi Okuda
- Affiliation: Department of Mathematical Sciences, Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Email: okuda@gm.math.waseda.ac.jp
- Received by editor(s): March 1, 2006
- Published electronically: June 19, 2007
- Additional Notes: The first author was partly supported by Grant-in-Aid for Young Scientists (B) No. 18740020 and the second author was partly supported by Grant-in-Aid for Young Scientists (B) No. 17740026 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
- Communicated by: Jonathan M. Borwein
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3029-3037
- MSC (2000): Primary 11M41, 33D15, 11B65, 05A30, 11M06
- DOI: https://doi.org/10.1090/S0002-9939-07-08994-0
- MathSciNet review: 2322731