Dimension functions of Cantor sets
HTML articles powered by AMS MathViewer
- by Ignacio Garcia, Ursula Molter and Roberto Scotto
- Proc. Amer. Math. Soc. 135 (2007), 3151-3161
- DOI: https://doi.org/10.1090/S0002-9939-07-09019-3
- Published electronically: June 21, 2007
- PDF | Request permission
Abstract:
We estimate the packing measure of Cantor sets associated to non-increasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets.References
- E. Best, A closed dimensionless linear set, Proc. Edinburgh Math. Soc. (2) 6 (1939), 105–108. MR 1824, DOI 10.1017/S0013091500024561
- A. S. Besicovitch and S. J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449–459. MR 64849, DOI 10.1112/jlms/s1-29.4.449
- Carlos Cabrelli, K. Hare, and Ursula M. Molter. Some counterexamples for Cantor sets. Unpublished Manuscript, Vanderbilt, 2002.
- Carlos A. Cabrelli, Kathryn E. Hare, and Ursula M. Molter, Sums of Cantor sets, Ergodic Theory Dynam. Systems 17 (1997), no. 6, 1299–1313. MR 1488319, DOI 10.1017/S0143385797097678
- Carlos Cabrelli, Franklin Mendivil, Ursula M. Molter, and Ronald Shonkwiler, On the Hausdorff $h$-measure of Cantor sets, Pacific J. Math. 217 (2004), no. 1, 45–59. MR 2105765, DOI 10.2140/pjm.2004.217.45
- C. Cabrelli, U. Molter, V. Paulauskas, and R. Shonkwiler, Hausdorff measure of $p$-Cantor sets, Real Anal. Exchange 30 (2004/05), no. 2, 413–433. MR 2177411, DOI 10.14321/realanalexch.30.2.0413
- Kenneth Falconer, Techniques in fractal geometry, John Wiley & Sons, Ltd., Chichester, 1997. MR 1449135
- L. Olsen, The exact Hausdorff dimension functions of some Cantor sets, Nonlinearity 16 (2003), no. 3, 963–970. MR 1975790, DOI 10.1088/0951-7715/16/3/309
- C. A. Rogers, Hausdorff measures, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1970 original; With a foreword by K. J. Falconer. MR 1692618
- Claude Tricot Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 1, 57–74. MR 633256, DOI 10.1017/S0305004100059119
- Claude Tricot, Curves and fractal dimension, Springer-Verlag, New York, 1995. With a foreword by Michel Mendès France; Translated from the 1993 French original. MR 1302173, DOI 10.1007/978-1-4612-4170-6
- S. James Taylor and Claude Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), no. 2, 679–699. MR 776398, DOI 10.1090/S0002-9947-1985-0776398-8
Bibliographic Information
- Ignacio Garcia
- Affiliation: Departamento de Matemática, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina and IMAL CONICET UNL
- Email: igarcia@math.unl.edu.ar
- Ursula Molter
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Capital Federal, Argentina and CONICET, Argentina
- MR Author ID: 126270
- Email: umolter@dm.uba.ar
- Roberto Scotto
- Affiliation: Departamento de Matemática, Universidad Nacional del Litoral, Santa Fe, Argentina
- Email: scotto@math.unl.edu.ar
- Received by editor(s): May 2, 2006
- Published electronically: June 21, 2007
- Communicated by: Michael T. Lacey
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3151-3161
- MSC (2000): Primary 28A78, 28A80
- DOI: https://doi.org/10.1090/S0002-9939-07-09019-3
- MathSciNet review: 2322745