Non-accumulation of critical points of the Poincaré time on hyperbolic polycycles
HTML articles powered by AMS MathViewer
- by Pavao Mardešić and Mariana Saavedra
- Proc. Amer. Math. Soc. 135 (2007), 3273-3282
- DOI: https://doi.org/10.1090/S0002-9939-07-09026-0
- Published electronically: June 22, 2007
- PDF | Request permission
Abstract:
We call Poincaré time the time associated to the Poincaré (or first return) map of a vector field. In this paper we prove the non-accumulation of isolated critical points of the Poincaré time $T$ on hyperbolic polycycles of polynomial vector fields. The result is obtained by proving that the Poincaré time of a hyperbolic polycycle either has an unbounded principal part or is an almost regular function. The result relies heavily on the proof of Il’yashenko’s theorem on non-accumulation of limit cycles on hyperbolic polycycles.References
- Carmen Chicone and Freddy Dumortier, Finiteness for critical periods of planar analytic vector fields, Nonlinear Anal. 20 (1993), no. 4, 315–335. MR 1206421, DOI 10.1016/0362-546X(93)90136-G
- H. Dulac, Sur les cycles limites, Bull. Soc. Math. France 51 (1923), 45–188 (French). MR 1504823
- Jean Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1992 (French, with French summary). MR 1399559
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2
- Yu. S. Il′yashenko, Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 32–42 (Russian). MR 757247
- Yu. S. Il′yashenko, Finiteness theorems for limit cycles, Algebra and analysis (Kemerovo, 1988) Amer. Math. Soc. Transl. Ser. 2, vol. 148, Amer. Math. Soc., Providence, RI, 1991, pp. 55–64. MR 1109064, DOI 10.1090/trans2/148/06
- Robert Moussu, Le problème de la finitude du nombre de cycles limites, Astérisque 145-146 (1987), 3, 89–101 (French). Séminaire Bourbaki, Vol. 1985/86. MR 880027
- Robert Roussarie, Bifurcation of planar vector fields and Hilbert’s sixteenth problem, Progress in Mathematics, vol. 164, Birkhäuser Verlag, Basel, 1998. MR 1628014, DOI 10.1007/978-3-0348-8798-4
- Mariana Saavedra, Développement asymptotique de la fonction période, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 6, 563–566 (French, with English and French summaries). MR 1298283
- Mariana Saavedra, Asymptotic expansion of the period function, J. Differential Equations 193 (2003), no. 2, 359–373. MR 1998638, DOI 10.1016/S0022-0396(03)00091-3
- Mariana Saavedra, Asymptotic expansion of the period function. II, J. Differential Equations 222 (2006), no. 2, 476–486. MR 2208293, DOI 10.1016/j.jde.2005.04.011
- E. Titčmarš, Teoriya funktsiĭ, 2nd ed., “Nauka”, Moscow, 1980 (Russian). Translated from the English and with a preface by V. A. Rohlin. MR 593142
Bibliographic Information
- Pavao Mardešić
- Affiliation: Institut de Mathématique de Bourgogne, U.M.R. 5584 du C.N.R.S. Université de Bourgogne, B.P. 47 870 21078 Dijon Cedex, France
- Email: mardesic@u-bourgogne.fr
- Mariana Saavedra
- Affiliation: Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Chile
- Email: mariansa@udec.cl
- Received by editor(s): July 5, 2006
- Published electronically: June 22, 2007
- Additional Notes: This work was partially supported by Fondecyt Projects 1061006 and 7060107, Escuela de Graduados de la Universidad de Concepción and Proyecto Fundación Andes C13955/12
- Communicated by: Carmen C. Chicone
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 3273-3282
- MSC (2000): Primary 34C07; Secondary 34C25, 34M35
- DOI: https://doi.org/10.1090/S0002-9939-07-09026-0
- MathSciNet review: 2322759