Regions of positivity for polyharmonic Green functions in arbitrary domains
HTML articles powered by AMS MathViewer
- by Hans-Christoph Grunau and Guido Sweers
- Proc. Amer. Math. Soc. 135 (2007), 3537-3546
- DOI: https://doi.org/10.1090/S0002-9939-07-08851-X
- Published electronically: July 3, 2007
- PDF | Request permission
Abstract:
The Green function for the biharmonic operator on bounded domains with zero Dirichlet boundary conditions is in general not of fixed sign. However, by extending an idea of Z. Nehari, we are able to identify regions of positivity for Green functions of polyharmonic operators. In particular, the biharmonic Green function is considered in all space dimensions. As a consequence we see that the negative part of any such Green function is somehow small compared with the singular positive part.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- T. Boggio, Sulle funzioni di Green d’ordine m, Rend. Circ. Mat. Palermo 20, 97–135 (1905).
- Charles V. Coffman, On the structure of solutions $\Delta ^{2}u=\lambda u$ which satisfy the clamped plate conditions on a right angle, SIAM J. Math. Anal. 13 (1982), no. 5, 746–757. MR 668318, DOI 10.1137/0513051
- C. V. Coffman and R. J. Duffin, On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle, Adv. in Appl. Math. 1 (1980), no. 4, 373–389. MR 603137, DOI 10.1016/0196-8858(80)90018-4
- Charles V. Coffman and Carole L. Grover, Obtuse cones in Hilbert spaces and applications to partial differential equations, J. Functional Analysis 35 (1980), no. 3, 369–396. MR 563561, DOI 10.1016/0022-1236(80)90088-9
- Anna Dall’Acqua and Guido Sweers, Estimates for Green function and Poisson kernels of higher-order Dirichlet boundary value problems, J. Differential Equations 205 (2004), no. 2, 466–487. MR 2092867, DOI 10.1016/j.jde.2004.06.004
- Anna Dall’Acqua and Guido Sweers, The clamped-plate equation for the limaçon, Ann. Mat. Pura Appl. (4) 184 (2005), no. 3, 361–374. MR 2164263, DOI 10.1007/s10231-004-0121-9
- Anna Dall’Acqua, Christian Meister, and Guido Sweers, Separating positivity and regularity for fourth order Dirichlet problems in 2d-domains, Analysis (Munich) 25 (2005), no. 3, 205–261. MR 2232852, DOI 10.1524/anly.2005.25.3.205
- R. J. Duffin, On a question of Hadamard concerning super-biharmonic functions, J. Math. Physics 27 (1949), 253–258. MR 0029021
- P. R. Garabedian, Partial differential equations, 2nd ed., Chelsea Publishing Co., New York, 1986. MR 943117
- Hans-Christoph Grunau and Guido Sweers, Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions, Math. Nachr. 179 (1996), 89–102. MR 1389451, DOI 10.1002/mana.19961790106
- Hans-Christoph Grunau and Guido Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann. 307 (1997), no. 4, 589–626. MR 1464133, DOI 10.1007/s002080050052
- Jacques Hadamard, Œuvres de Jacques Hadamard. Tomes I, II, III, IV, Éditions du Centre National de la Recherche Scientifique, Paris, 1968 (French). Comité de publication des oeuvres de Jacques Hadamard: M. Fréchet, P. Levy, S. Mandelbrojt, L. Schwartz. MR 0230598
- Jacques Hadamard, Œuvres de Jacques Hadamard. Tomes I, II, III, IV, Éditions du Centre National de la Recherche Scientifique, Paris, 1968 (French). Comité de publication des oeuvres de Jacques Hadamard: M. Fréchet, P. Levy, S. Mandelbrojt, L. Schwartz. MR 0230598
- Ju. P. Krasovskiĭ, Isolation of the singularity in Green’s function, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 977–1010 (Russian). MR 0223740
- V. A. Malyshev, The Hadamard conjecture and estimates for the Green function, Algebra i Analiz 4 (1992), no. 4, 1–44 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 4, 633–666. MR 1190781
- Zeev Nehari, On the biharmonic Green’s function, Studies in mathematics and mechanics presented to Richard von Mises, Academic Press, Inc., New York, 1954, pp. 111–117. MR 0064992
- Stanley Osher, On Green’s function for the biharmonic equation in a right angle wedge, J. Math. Anal. Appl. 43 (1973), 705–716. MR 324209, DOI 10.1016/0022-247X(73)90286-2
- E. Sassone, Positivity for polyharmonic problems on domains close to a disk, Ann. Mat. Pura Appl. 186, 419-432 (2007).
- Harold S. Shapiro and Max Tegmark, An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign, SIAM Rev. 36 (1994), no. 1, 99–101. MR 1267051, DOI 10.1137/1036005
Bibliographic Information
- Hans-Christoph Grunau
- Affiliation: Fakultät für Mathematik, Otto–von–Guericke–Universität, Postfach 4120, 39016 Magdeburg, Germany
- Email: Hans-Christoph.Grunau@mathematik.uni-magdeburg.de
- Guido Sweers
- Affiliation: Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany; and Delft Institute of Applied Mathematics, Delft University of Technology, PO Box 5031, 2600 GA Delft, The Netherlands
- Email: gsweers@math.uni-koeln.de, G.H.Sweers@tudelft.nl
- Received by editor(s): February 13, 2006
- Received by editor(s) in revised form: July 7, 2006
- Published electronically: July 3, 2007
- Communicated by: Walter Craig
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3537-3546
- MSC (2000): Primary 35J65, 35B50, 35J40
- DOI: https://doi.org/10.1090/S0002-9939-07-08851-X
- MathSciNet review: 2336568
Dedicated: Dedicated to Prof. J. Serrin on the occasion of his 80th birthday