Random series in $L^p(X,\Sigma ,\mu )$ using unconditional basic sequences and $l^p$ stable sequences: A result on almost sure almost everywhere convergence
HTML articles powered by AMS MathViewer
- by Juan M. Medina and B. Cernuschi-Frías
- Proc. Amer. Math. Soc. 135 (2007), 3561-3569
- DOI: https://doi.org/10.1090/S0002-9939-07-08870-3
- Published electronically: June 21, 2007
- PDF | Request permission
Abstract:
Here we study the almost sure almost everywhere convergence of random series of the form $\sum _{i=1}^{\infty } {a_i f_i}$ in the Lebesgue spaces $L^p(X,\Sigma ,\mu )$, where the $a_i$’s are centered random variables, and the $f_i$’s constitute an unconditional basic sequence or an $l^p$ stable sequence. We show that if one of these series converges in the norm topology almost surely, then it converges almost everywhere almost surely.References
- Sylvie Guerre-Delabrière, Classical sequences in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 166, Marcel Dekker, Inc., New York, 1992. With a foreword by Haskell P. Rosenthal. MR 1197117
- Kahane, J.P., Some Random Series of Functions, Cambridge, 1993.
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- Michel Loève, Probability theory. I, 4th ed., Graduate Texts in Mathematics, Vol. 45, Springer-Verlag, New York-Heidelberg, 1977. MR 0651017
- Menchoff, D., Sur les séries de fonctions orthogonales I. Fund. Math. 4, 1923, pages 82-105.
- Peter Ørno, A note on unconditionally converging series in $L_{p}$, Proc. Amer. Math. Soc. 59 (1976), no. 2, 252–254. MR 458156, DOI 10.1090/S0002-9939-1976-0458156-7
- Robert L. Taylor, Stochastic convergence of weighted sums of random elements in linear spaces, Lecture Notes in Mathematics, vol. 672, Springer, Berlin, 1978. MR 513422
- P. Wojtaszczyk, Wavelets as unconditional bases in $L_p(\textbf {R})$, J. Fourier Anal. Appl. 5 (1999), no. 1, 73–85. MR 1682254, DOI 10.1007/BF01274190
- Lihua Yang, Unconditional basic sequence in $L^p(\mu )$ and its $l^p$-stability, Proc. Amer. Math. Soc. 127 (1999), no. 2, 455–464. MR 1473673, DOI 10.1090/S0002-9939-99-04638-9
Bibliographic Information
- Juan M. Medina
- Affiliation: Facultad de Ingeniería, Paseo Colón 850 (1063), Capital Federal, Depto. de Mathemática, Universidad de Buenos Aires and Instituto Argentino de Matemática, Conicet, Argentina
- MR Author ID: 079851
- ORCID: 0000-0003-0370-6837
- Email: jmedina@fi.uba.ar
- B. Cernuschi-Frías
- Affiliation: Facultad de Ingeniería, Universidad de Buenos Aires and Instituto Argentino de Matemática, Conicet, Argentina
- MR Author ID: 079852
- ORCID: 0000-0001-5335-9402
- Email: bcf@ieee.org
- Received by editor(s): November 15, 2005
- Received by editor(s) in revised form: August 7, 2006
- Published electronically: June 21, 2007
- Additional Notes: This work was partially supported by the Universidad de Buenos Aires, grant No. I028, and the Consejo Nacional de Investigaciones Científicas y Técnicas, Conicet, Argentina
- Communicated by: Edward C. Waymire
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3561-3569
- MSC (2000): Primary 46B20, 60B11, 46B09; Secondary 40A05
- DOI: https://doi.org/10.1090/S0002-9939-07-08870-3
- MathSciNet review: 2336571