Matrix summability and uniform convergence of series
HTML articles powered by AMS MathViewer
- by Antonio Aizpuru, Francisco J. García-Pacheco and Consuelo Pérez-Eslava
- Proc. Amer. Math. Soc. 135 (2007), 3571-3579
- DOI: https://doi.org/10.1090/S0002-9939-07-08882-X
- Published electronically: June 21, 2007
- PDF | Request permission
Abstract:
Some classical results about uniform convergence of unconditionally convergent series are generalized to weakly unconditionally Cauchy series by means of the matrix summability method for regular matrices.References
- A. Aizpuru and J. Pérez-Fernández, Spaces of $\scr S$-bounded multiplier convergent series, Acta Math. Hungar. 87 (2000), no. 1-2, 135–146. MR 1755883, DOI 10.1023/A:1006781218759
- A. Aizpuru, A. Gutiérrez-Dávila, and F. J. Pérez-Fernández, Boolean algebras and uniform convergence of series, J. Math. Anal. Appl. 284 (2003), no. 1, 89–96. MR 1996119, DOI 10.1016/S0022-247X(03)00241-5
- A. Aizpuru and C. Pérez-Eslava, Matrix methods in summability and weakly unconditionally Cauchy series, Preprint.
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- Johann Boos, Classical and modern methods in summability, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Assisted by Peter Cass; Oxford Science Publications. MR 1817226
- Qingying Bu and Congxin Wu, Unconditionally convergent series of operators on Banach spaces, J. Math. Anal. Appl. 207 (1997), no. 2, 291–299. MR 1438915, DOI 10.1006/jmaa.1997.5218
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- Richard Haydon, A nonreflexive Grothendieck space that does not contain $l_{\infty }$, Israel J. Math. 40 (1981), no. 1, 65–73. MR 636907, DOI 10.1007/BF02761818
- Walter Schachermayer, On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras, Dissertationes Math. (Rozprawy Mat.) 214 (1982), 33. MR 673286
- Charles Swartz, The Schur lemma for bounded multiplier convergent series, Math. Ann. 263 (1983), no. 3, 283–288. MR 704294, DOI 10.1007/BF01457131
Bibliographic Information
- Antonio Aizpuru
- Affiliation: Departamento de Matemáticas, Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
- Email: antonio.aizpuru@uca.es
- Francisco J. García-Pacheco
- Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio, 44242
- Email: fgarcia@math.kent.edu
- Consuelo Pérez-Eslava
- Affiliation: Departamento de Matemáticas, Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
- Email: consuelo.perezeslava@alum.uca.es
- Received by editor(s): January 17, 2006
- Received by editor(s) in revised form: August 9, 2006
- Published electronically: June 21, 2007
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3571-3579
- MSC (2000): Primary 46B15, 46B25, 46B20
- DOI: https://doi.org/10.1090/S0002-9939-07-08882-X
- MathSciNet review: 2336572