On finitely injective modules and locally pure-injective modules over Prüfer domains
HTML articles powered by AMS MathViewer
- by Luigi Salce
- Proc. Amer. Math. Soc. 135 (2007), 3485-3493
- DOI: https://doi.org/10.1090/S0002-9939-07-08906-X
- Published electronically: June 29, 2007
- PDF | Request permission
Abstract:
Over Matlis valuation domains there exist finitely injective modules which are not direct sums of injective modules, as well as complete locally pure-injective modules which are not the completion of a direct sum of pure-injective modules. Over Prüfer domains which are either almost maximal, or $h$-local Matlis, finitely injective torsion modules and complete torsion-free locally pure-injective modules correspond to each other under the Matlis equivalence. Almost maximal Prüfer domains are characterized by the property that every torsion-free complete module is locally pure-injective. It is derived that semi-Dedekind domains are Dedekind.References
- S. Bazzoni and L. Salce, An independence result on cotorsion theories over valuation domains, J. Algebra 243 (2001), no. 1, 294–320. MR 1851665, DOI 10.1006/jabr.2001.8800
- Willy Brandal, Almost maximal integral domains and finitely generated modules, Trans. Amer. Math. Soc. 183 (1973), 203–222. MR 325609, DOI 10.1090/S0002-9947-1973-0325609-3
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- Paul C. Eklof and Alan H. Mekler, Almost free modules, Revised edition, North-Holland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002. Set-theoretic methods. MR 1914985
- Alberto Facchini, Torsion-free covers and pure-injective envelopes over valuation domains, Israel J. Math. 52 (1985), no. 1-2, 129–139. MR 815608, DOI 10.1007/BF02776086
- Alberto Facchini, Absolutely pure modules and locally injective modules, Commutative ring theory (Fès, 1992) Lecture Notes in Pure and Appl. Math., vol. 153, Dekker, New York, 1994, pp. 105–109. MR 1261882
- László Fuchs and Luigi Salce, Modules over valuation domains, Lecture Notes in Pure and Applied Mathematics, vol. 97, Marcel Dekker, Inc., New York, 1985. MR 786121
- —, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, vol. 84, American Mathematical Society, Providence, RI, 2001.
- Phillip Griffith, A note on a theorem of Hill, Pacific J. Math. 29 (1969), 279–284. MR 245613
- Laurent Gruson and Christian U. Jensen, Deux applications de la notion de $L$-dimension, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 1, Aii, A23–A24. MR 401880
- Paul Hill, On the decomposition of groups, Canadian J. Math. 21 (1969), 762–768. MR 249507, DOI 10.4153/CJM-1969-087-6
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294, DOI 10.1007/978-1-4612-0525-8
- Sang B́um Lee, $h$-divisible modules, Comm. Algebra 31 (2003), no. 1, 513–525. MR 1969238, DOI 10.1081/AGB-120016774
- Eben Matlis, Divisible modules, Proc. Amer. Math. Soc. 11 (1960), 385–391. MR 116044, DOI 10.1090/S0002-9939-1960-0116044-8
- V. S. Ramamurthi and K. M. Rangaswamy, On finitely injective modules, J. Austral. Math. Soc. 16 (1973), 239–248. Collection of articles dedicated to the memory of Hanna Neumann, II. MR 0332882
- Luigi Salce and Peter Vámos, On some classes of divisible modules, Rend. Sem. Mat. Univ. Padova 115 (2006), 125–136. MR 2245591
- R. Warfield, Relatively injective modules, unpublished manuscript, 1969.
- Wolfgang Zimmermann, Rein injektive direkte Summen von Moduln, Comm. Algebra 5 (1977), no. 10, 1083–1117 (German). MR 450327, DOI 10.1080/00927877708822211
- Wolfgang Zimmermann, On locally pure-injective modules, J. Pure Appl. Algebra 166 (2002), no. 3, 337–357. MR 1870625, DOI 10.1016/S0022-4049(01)00011-1
- Birge Zimmermann-Huisgen, On the abundance of $\aleph _1$-separable modules, Abelian groups and noncommutative rings, Contemp. Math., vol. 130, Amer. Math. Soc., Providence, RI, 1992, pp. 167–180. MR 1176118, DOI 10.1090/conm/130/1176118
Bibliographic Information
- Luigi Salce
- Affiliation: Dipartimento di Matematica Pura e Applicata, Università di Padova, via Trieste 63, I-35121 Padova, Italy
- MR Author ID: 153345
- Email: salce@math.unipd.it
- Received by editor(s): February 6, 2006
- Received by editor(s) in revised form: August 21, 2006
- Published electronically: June 29, 2007
- Additional Notes: The research of this author was supported by MIUR, PRIN 2005.
- Communicated by: Bernd Ulrich
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3485-3493
- MSC (2000): Primary 13A05; Secondary 13C11, 13F05
- DOI: https://doi.org/10.1090/S0002-9939-07-08906-X
- MathSciNet review: 2336561