On a Littlewood-Paley type inequality
Authors:
Olivera Djordjevic and Miroslav Pavlovic
Journal:
Proc. Amer. Math. Soc. 135 (2007), 3607-3611
MSC (2000):
Primary 31B05
DOI:
https://doi.org/10.1090/S0002-9939-07-09016-8
Published electronically:
July 2, 2007
MathSciNet review:
2336576
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The following is proved: If is a function harmonic in the unit ball
and if
then the inequality



- 1. C. Fefferman and E. M. Stein, 𝐻^{𝑝} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, https://doi.org/10.1007/BF02392215
- 2. T. M. Flett, Mean values of power series, Pacific J. Math. 25 (1968), 463–494. MR 229807
- 3. John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- 4. G.H. Hardy and J.E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423.
- 5. Miroljub Jevtić and Miroslav Pavlović, 𝑀-Besov 𝑝-classes and Hankel operators in the Bergman space on the unit ball, Arch. Math. (Basel) 61 (1993), no. 4, 367–376. MR 1236315, https://doi.org/10.1007/BF01201453
- 6. Miroljub Jevtić and Miroslav Pavlović, On subharmonic behaviour of functions and their tangential derivatives on the unit ball in 𝐂ⁿ, Indian J. Pure Appl. Math. 30 (1999), no. 4, 407–418. MR 1695693
- 7. J.E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series. II, Proc. Lond. Math. Soc. 42(1936), 52-89.
- 8. Daniel H. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 103 (1988), no. 3, 887–893. MR 947675, https://doi.org/10.1090/S0002-9939-1988-0947675-0
- 9. Miroslav Pavlović, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball, Indag. Math. (N.S.) 2 (1991), no. 1, 89–98. MR 1104834, https://doi.org/10.1016/0019-3577(91)90044-8
- 10. Miroslav Pavlović, On subharmonic behaviour and oscillation of functions on balls in 𝐑ⁿ, Publ. Inst. Math. (Beograd) (N.S.) 55(69) (1994), 18–22. MR 1324970
- 11. Miroslav Pavlović, Subharmonic behaviour of smooth functions, Mat. Vesnik 48 (1996), no. 1-2, 15–21. MR 1410667
- 12. Miroslav Pavlović, Decompositions of 𝐿^{𝑝} and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. 216 (1997), no. 2, 499–509. MR 1489593, https://doi.org/10.1006/jmaa.1997.5675
- 13. Miroslav Pavlović, A Littlewood-Paley theorem for subharmonic functions, Publ. Inst. Math. (Beograd) (N.S.) 68(82) (2000), 77–82. MR 1826098
- 14. Miroslav Pavlović, Introduction to function spaces on the disk, Posebna Izdanja [Special Editions], vol. 20, Matematički Institut SANU, Belgrade, 2004. MR 2109650
- 15. Miroslav Pavlović, A short proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 134 (2006), no. 12, 3625–3627. MR 2240675, https://doi.org/10.1090/S0002-9939-06-08434-6
- 16. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- 17. Elias M. Stein and Guido Weiss, On the theory of harmonic functions of several variables. I. The theory of 𝐻^{𝑝}-spaces, Acta Math. 103 (1960), 25–62. MR 121579, https://doi.org/10.1007/BF02546524
- 18. Stevo Stević, A Littlewood-Paley type inequality, Bull. Braz. Math. Soc. (N.S.) 34 (2003), no. 2, 211–217. MR 1992637, https://doi.org/10.1007/s00574-003-0008-1
- 19.
M. Stoll, On generalizations of the Littlewood-Paley inequalities to domains in
, IWPT (2004)
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31B05
Retrieve articles in all journals with MSC (2000): 31B05
Additional Information
Olivera Djordjevic
Affiliation:
Fakultet organizacionih nauka, Jove Ilića 154, Belgrade, Serbia
Email:
oliveradj@fon.bg.ac.yu
Miroslav Pavlovic
Affiliation:
Matematički fakultet, Studentski trg 16, Belgrade, Serbia
Email:
pavlovic@matf.bg.ac.yu
DOI:
https://doi.org/10.1090/S0002-9939-07-09016-8
Keywords:
Littlewood-Paley inequalities,
harmonic functions in $\mathbb R^N$
Received by editor(s):
August 18, 2006
Published electronically:
July 2, 2007
Communicated by:
Michael T. Lacey
Article copyright:
© Copyright 2007
American Mathematical Society