On a Littlewood-Paley type inequality
HTML articles powered by AMS MathViewer
- by Olivera Djordjević and Miroslav Pavlović
- Proc. Amer. Math. Soc. 135 (2007), 3607-3611
- DOI: https://doi.org/10.1090/S0002-9939-07-09016-8
- Published electronically: July 2, 2007
- PDF | Request permission
Abstract:
The following is proved: If $u$ is a function harmonic in the unit ball $B\subset \mathbb R^N$ and if $0<p\le 1,$ then the inequality \begin{equation*} \int _{\partial B}u^*(y)^p d\sigma \le C_{p,N}\left (|u(0)|^p +\int _B(1-|x|)^{p-1}|\nabla u(x)|^p dV(x)\right ) \end{equation*} holds, where $u^*$ is the nontangential maximal function of $u.$ This improves a recent result of Stoll. This inequality holds for polyharmonic and hyperbolically harmonic functions as well.References
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- T. M. Flett, Mean values of power series, Pacific J. Math. 25 (1968), 463–494. MR 229807
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405–423.
- Miroljub Jevtić and Miroslav Pavlović, $M$-Besov $p$-classes and Hankel operators in the Bergman space on the unit ball, Arch. Math. (Basel) 61 (1993), no. 4, 367–376. MR 1236315, DOI 10.1007/BF01201453
- Miroljub Jevtić and Miroslav Pavlović, On subharmonic behaviour of functions and their tangential derivatives on the unit ball in $\mathbf C^n$, Indian J. Pure Appl. Math. 30 (1999), no. 4, 407–418. MR 1695693
- J.E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series. II, Proc. Lond. Math. Soc. 42(1936), 52–89.
- Daniel H. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 103 (1988), no. 3, 887–893. MR 947675, DOI 10.1090/S0002-9939-1988-0947675-0
- Miroslav Pavlović, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball, Indag. Math. (N.S.) 2 (1991), no. 1, 89–98. MR 1104834, DOI 10.1016/0019-3577(91)90044-8
- Miroslav Pavlović, On subharmonic behaviour and oscillation of functions on balls in $\mathbf R^n$, Publ. Inst. Math. (Beograd) (N.S.) 55(69) (1994), 18–22. MR 1324970
- Miroslav Pavlović, Subharmonic behaviour of smooth functions, Mat. Vesnik 48 (1996), no. 1-2, 15–21. MR 1410667
- Miroslav Pavlović, Decompositions of $L^p$ and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. 216 (1997), no. 2, 499–509. MR 1489593, DOI 10.1006/jmaa.1997.5675
- Miroslav Pavlović, A Littlewood-Paley theorem for subharmonic functions, Publ. Inst. Math. (Beograd) (N.S.) 68(82) (2000), 77–82. MR 1826098
- Miroslav Pavlović, Introduction to function spaces on the disk, Posebna Izdanja [Special Editions], vol. 20, Matematički Institut SANU, Belgrade, 2004. MR 2109650
- Miroslav Pavlović, A short proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 134 (2006), no. 12, 3625–3627. MR 2240675, DOI 10.1090/S0002-9939-06-08434-6
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, On the theory of harmonic functions of several variables. I. The theory of $H^{p}$-spaces, Acta Math. 103 (1960), 25–62. MR 121579, DOI 10.1007/BF02546524
- Stevo Stević, A Littlewood-Paley type inequality, Bull. Braz. Math. Soc. (N.S.) 34 (2003), no. 2, 211–217. MR 1992637, DOI 10.1007/s00574-003-0008-1
- M. Stoll, On generalizations of the Littlewood-Paley inequalities to domains in $\mathbb R^n$, IWPT (2004)
Bibliographic Information
- Olivera Djordjević
- Affiliation: Fakultet organizacionih nauka, Jove Ilića 154, Belgrade, Serbia
- Email: oliveradj@fon.bg.ac.yu
- Miroslav Pavlović
- Affiliation: Matematički fakultet, Studentski trg 16, Belgrade, Serbia
- Email: pavlovic@matf.bg.ac.yu
- Received by editor(s): August 18, 2006
- Published electronically: July 2, 2007
- Communicated by: Michael T. Lacey
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 3607-3611
- MSC (2000): Primary 31B05
- DOI: https://doi.org/10.1090/S0002-9939-07-09016-8
- MathSciNet review: 2336576