The Rogers-Ramanujan continued fraction and a quintic iteration for
Authors:
Heng Huat Chan, Shaun Cooper and Wen-Chin Liaw
Journal:
Proc. Amer. Math. Soc. 135 (2007), 3417-3424
MSC (2000):
Primary 11Y60; Secondary 11F20, 11F27, 33E05
DOI:
https://doi.org/10.1090/S0002-9939-07-09031-4
Published electronically:
July 3, 2007
MathSciNet review:
2336553
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Properties of the Rogers-Ramanujan continued fraction are used to obtain a formula for calculating with quintic convergence.
- 1. George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part I, Springer, New York, 2005. MR 2135178
- 2. Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903
- 3. Bruce C. Berndt, Ramanujan’s notebooks. Part V, Springer-Verlag, New York, 1998. MR 1486573
- 4. Bruce C. Berndt, Number theory in the spirit of Ramanujan, Student Mathematical Library, vol. 34, American Mathematical Society, Providence, RI, 2006. MR 2246314
- 5. Bruce C. Berndt and Robert A. Rankin, Ramanujan, History of Mathematics, vol. 9, American Mathematical Society, Providence, RI; London Mathematical Society, London, 1995. Letters and commentary. MR 1353909
- 6. Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
- 7. J. M. Borwein and P. B. Borwein, Approximating 𝜋 with Ramanujan’s modular equations, Rocky Mountain J. Math. 19 (1989), no. 1, 93–102. Constructive Function Theory—86 Conference (Edmonton, AB, 1986). MR 1016163, https://doi.org/10.1216/RMJ-1989-19-1-93
- 8. J. M. Borwein, P. B. Borwein, and D. H. Bailey, Ramanujan, modular equations, and approximations to pi, or How to compute one billion digits of pi, Amer. Math. Monthly 96 (1989), no. 3, 201–219. MR 991866, https://doi.org/10.2307/2325206
- 9. J. M. Borwein and F. G. Garvan, Approximations to 𝜋 via the Dedekind eta function, Organic mathematics (Burnaby, BC, 1995) CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 89–115. MR 1483915
- 10. Heng Huat Chan, Ramanujan’s elliptic functions to alternative bases and approximations to 𝜋, Number theory for the millennium, I (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 197–213. MR 1956226
- 11. H. H. Chan and K. P. Loo, Ramanujan's cubic continued fraction revisited, Acta Arith., 126 (2007), no. 4, 305-313.
- 12. J. M. Dobbie, A simple proof of some partition formulae of Ramanujan’s, Quart. J. Math. Oxford Ser. (2) 6 (1955), 193–196. MR 72896, https://doi.org/10.1093/qmath/6.1.193
- 13. W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 2, 137–162. MR 2133308, https://doi.org/10.1090/S0273-0979-05-01047-5
- 14. M. D. Hirschhorn, A simple proof of an identity of Ramanujan, J. Austral. Math. Soc. Ser. A 34 (1983), no. 1, 31–35. MR 683175
- 15. Michael D. Hirschhorn, An identity of Ramanujan, and applications, 𝑞-series from a contemporary perspective (South Hadley, MA, 1998) Contemp. Math., vol. 254, Amer. Math. Soc., Providence, RI, 2000, pp. 229–234. MR 1768930, https://doi.org/10.1090/conm/254/03956
- 16. Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
- 17. Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11Y60, 11F20, 11F27, 33E05
Retrieve articles in all journals with MSC (2000): 11Y60, 11F20, 11F27, 33E05
Additional Information
Heng Huat Chan
Affiliation:
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
Email:
matchh@nus.edu.sg
Shaun Cooper
Affiliation:
Institute of Information and Mathematical Sciences, Massey University–Albany, Private Bag 102904, North Shore Mail Centre, Auckland, New Zealand
Email:
s.cooper@massey.ac.nz
Wen-Chin Liaw
Affiliation:
Department of Mathematics, National Chung Cheng University, Minhsiung, Chiayi 621, Taiwan, Republic of China
Email:
wcliaw@math.ccu.edu.tw
DOI:
https://doi.org/10.1090/S0002-9939-07-09031-4
Received by editor(s):
December 9, 2005
Published electronically:
July 3, 2007
Additional Notes:
The third author is grateful for the support from the National Science Council of Taiwan, Republic of China, through Grant NSC95-2115-M-194-012.
Communicated by:
Jonathan M. Borwein
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.