On the index and spectrum of differential operators on $\mathbb {R}^{N}$
HTML articles powered by AMS MathViewer
- by Patrick J. Rabier
- Proc. Amer. Math. Soc. 135 (2007), 3875-3885
- DOI: https://doi.org/10.1090/S0002-9939-07-08896-X
- Published electronically: August 29, 2007
- PDF | Request permission
Abstract:
If $P(x,\partial )$ is an $r\times r$ system of differential operators on $\mathbb {R}^{N}$ having continuous coefficients with vanishing oscillation at infinity, the Cordes–Illner theory ensures that $P(x,\partial )$ is Fredholm from $(W^{m,p})^{r}$ to $(L^{p})^{r}$ for all or no value $p\in (1,\infty ).$ We prove that both the index (when defined) and the spectrum of $P(x,\partial )$ are independent of $p.$References
- Constantine Callias, Axial anomalies and index theorems on open spaces, Comm. Math. Phys. 62 (1978), no. 3, 213–234. MR 507780, DOI 10.1007/BF01202525
- H. O. Cordes, Beispiele von Pseudo-Differentialoperator-Algebren, Applicable Anal. 2 (1972), 115–129 (German, with English summary). MR 402541, DOI 10.1080/00036817208839032
- H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Functional Analysis 18 (1975), 115–131. MR 377599, DOI 10.1016/0022-1236(75)90020-8
- E. B. Davies, $L^p$ spectral theory of higher-order elliptic differential operators, Bull. London Math. Soc. 29 (1997), no. 5, 513–546. MR 1458713, DOI 10.1112/S002460939700324X
- J. Dieudonné, Éléments d’analyse. Tome IX. Chapitre XXIV, Cahiers Scientifiques [Scientific Reports], Fasc. XLII, Gauthier-Villars, Paris, 1982 (French). MR 658305
- Qihong Fan and M. W. Wong, A characterization of Fredholm pseudo-differential operators, J. London Math. Soc. (2) 55 (1997), no. 1, 139–145. MR 1423291, DOI 10.1112/S0024610796004632
- B. V. Fedosov, Analytic formulae for the index of elliptic operators, Trudy Moskov. Mat. Obšč. 30 (1974), 159–241 (Russian). MR 0420731
- Giuseppe Geymonat, Sui problemi ai limiti per i sistemi lineari ellittici, Ann. Mat. Pura Appl. (4) 69 (1965), 207–284 (Italian). MR 196262, DOI 10.1007/BF02414374
- Rainer Hempel and Jürgen Voigt, The spectrum of a Schrödinger operator in $L_p(\textbf {R}^\nu )$ is $p$-independent, Comm. Math. Phys. 104 (1986), no. 2, 243–250. MR 836002, DOI 10.1007/BF01211592
- Matthias Hieber and Elmar Schrohe, $L^p$ spectral independence of elliptic operators via commutator estimates, Positivity 3 (1999), no. 3, 259–272. MR 1708648, DOI 10.1023/A:1009777826708
- L. Hörmander, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math. 32 (1979), no. 3, 360–444. MR 517939, DOI 10.1002/cpa.3160320304
- Reinhard Illner, Über Banachalgebren beschränkter Pseudodifferentialoperatoren und Fredholmkriterien in $L^{p}(\textbf {R}^{n})$, Bonner Mathematische Schriften, No. 86, Universität Bonn, Mathematisches Institut, Bonn, 1976 (German). Inauguraldissertation zur Erlangung des Doktorgrades der Hohen Mathem.-Naturw. Fakultät der Rheinischen Friedrich-Wilhelms-Universität, Bonn. MR 0442757
- A. Kozhevnikov, Complete scale of isomorphisms for elliptic pseudodifferential boundary-value problems, J. London Math. Soc. (2) 64 (2001), no. 2, 409–422. MR 1853460, DOI 10.1112/S0024610701002514
- Hans-Gerd Leopold and Elmar Schrohe, Invariance of the $L_p$ spectrum for hypoelliptic operators, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3679–3687. MR 1423315, DOI 10.1090/S0002-9939-97-04123-3
- Robert C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979), no. 6, 783–795. MR 539158, DOI 10.1002/cpa.3160320604
- Patrick J. Rabier, Fredholm operators, semigroups and the asymptotic and boundary behavior of solutions of PDEs, J. Differential Equations 193 (2003), no. 2, 460–480. MR 1998964, DOI 10.1016/S0022-0396(03)00094-9
- P. J. Rabier and C. A. Stuart, Fredholm properties of Schrödinger operators in $L^P(\mathbf R^N)$, Differential Integral Equations 13 (2000), no. 10-12, 1429–1444. MR 1787075
- R. T. Seeley, The index of elliptic systems of singular integral operators, J. Math. Anal. Appl. 7 (1963), 289–309. MR 159247, DOI 10.1016/0022-247X(63)90054-4
- Shun Hua Sun, A Banach algebra approach to the Fredholm theory of pseudodifferential operators, Sci. Sinica Ser. A 27 (1984), no. 4, 337–344. MR 763970
- Michael E. Taylor, Gelfand theory of pseudo differential operators and hypoelliptic operators, Trans. Amer. Math. Soc. 153 (1971), 495–510. MR 415430, DOI 10.1090/S0002-9947-1971-0415430-8
Bibliographic Information
- Patrick J. Rabier
- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Email: rabier@imap.pitt.edu
- Received by editor(s): January 14, 2006
- Received by editor(s) in revised form: August 27, 2006
- Published electronically: August 29, 2007
- Communicated by: David S. Tartakoff
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3875-3885
- MSC (2000): Primary 47A53, 47F05, 35J45
- DOI: https://doi.org/10.1090/S0002-9939-07-08896-X
- MathSciNet review: 2341938