All tilting modules are of finite type
HTML articles powered by AMS MathViewer
- by Silvana Bazzoni and Jan Šťovíček
- Proc. Amer. Math. Soc. 135 (2007), 3771-3781
- DOI: https://doi.org/10.1090/S0002-9939-07-08911-3
- Published electronically: August 30, 2007
- PDF | Request permission
Abstract:
We prove that any infinitely generated tilting module is of finite type, namely that its associated tilting class is the Ext-orthogonal of a set of modules possessing a projective resolution consisting of finitely generated projective modules.References
- Lidia Angeleri Hügel and Flávio Ulhoa Coelho, Infinitely generated tilting modules of finite projective dimension, Forum Math. 13 (2001), no. 2, 239–250. MR 1813669, DOI 10.1515/form.2001.006
- Lidia Angeleri Hügel, Dolors Herbera, and Jan Trlifaj, Tilting modules and Gorenstein rings, Forum Math. 18 (2006), no. 2, 211–229. MR 2218418, DOI 10.1515/FORUM.2006.013
- Lidia Angeleri Hügel, Alberto Tonolo, and Jan Trlifaj, Tilting preenvelopes and cotilting precovers, Algebr. Represent. Theory 4 (2001), no. 2, 155–170. MR 1834843, DOI 10.1023/A:1011485800557
- Maurice Auslander and Idun Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111–152. MR 1097029, DOI 10.1016/0001-8708(91)90037-8
- M. Auslander and Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. MR 591246, DOI 10.1016/0021-8693(80)90113-1
- Silvana Bazzoni, A characterization of $n$-cotilting and $n$-tilting modules, J. Algebra 273 (2004), no. 1, 359–372. MR 2032465, DOI 10.1016/S0021-8693(03)00432-0
- Silvana Bazzoni, Paul C. Eklof, and Jan Trlifaj, Tilting cotorsion pairs, Bull. London Math. Soc. 37 (2005), no. 5, 683–696. MR 2164830, DOI 10.1112/S0024609305004728
- S. Bazzoni, D. Herbera One dimensional tilting modules are of finite type, Algebr. Represent. Theory, in press 10.1007/s10468-007-9064-3
- Sheila Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gel′fand-Ponomarev reflection functors, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 103–169. MR 607151
- R. R. Colby and K. R. Fuller, Tilting, cotilting, and serially tilted rings, Comm. Algebra 18 (1990), no. 5, 1585–1615. MR 1059750, DOI 10.1080/00927879008823985
- Riccardo Colpi and Jan Trlifaj, Tilting modules and tilting torsion theories, J. Algebra 178 (1995), no. 2, 614–634. MR 1359905, DOI 10.1006/jabr.1995.1368
- William Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite-dimensional algebras, Algebras and modules, I (Trondheim, 1996) CMS Conf. Proc., vol. 23, Amer. Math. Soc., Providence, RI, 1998, pp. 29–54. MR 1648602
- Paul C. Eklof, László Fuchs, and Saharon Shelah, Baer modules over domains, Trans. Amer. Math. Soc. 322 (1990), no. 2, 547–560. MR 974514, DOI 10.1090/S0002-9947-1990-0974514-8
- Paul C. Eklof and Alan H. Mekler, Almost free modules, Revised edition, North-Holland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002. Set-theoretic methods. MR 1914985
- Paul C. Eklof and Jan Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), no. 1, 41–51. MR 1798574, DOI 10.1112/blms/33.1.41
- Edgar E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209. MR 636889, DOI 10.1007/BF02760849
- A. Grothendieck, “Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I”, Inst. Hautes Études Sci. Publ. Math. 11, 1961.
- Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443. MR 675063, DOI 10.1090/S0002-9947-1982-0675063-2
- Wilfrid Hodges, In singular cardinality, locally free algebras are free, Algebra Universalis 12 (1981), no. 2, 205–220. MR 608664, DOI 10.1007/BF02483879
- Yoichi Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146. MR 852914, DOI 10.1007/BF01163359
- Saharon Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math. 21 (1975), no. 4, 319–349. MR 389579, DOI 10.1007/BF02757993
- J. Šťovíček, J. Trlifaj, All tilting modules are of countable type, Bull. Lond. Math. Soc. 39 (2007), no. 1, 121–132.
- Jan Trlifaj, Cotorsion theories induced by tilting and cotilting modules, Abelian groups, rings and modules (Perth, 2000) Contemp. Math., vol. 273, Amer. Math. Soc., Providence, RI, 2001, pp. 285–300. MR 1817171, DOI 10.1090/conm/273/04443
- Jinzhong Xu, Flat covers of modules, Lecture Notes in Mathematics, vol. 1634, Springer-Verlag, Berlin, 1996. MR 1438789, DOI 10.1007/BFb0094173
Bibliographic Information
- Silvana Bazzoni
- Affiliation: Dipartimento di Matematica Pura e Applicata, Universitá di Padova, Via Trieste 63, 35121 Padova, Italy
- MR Author ID: 33015
- Email: bazzoni@math.unipd.it
- Jan Šťovíček
- Affiliation: Katedra algebry MFF UK, Sokolovská 83, 186 75 Praha 8, Czech Republic
- Email: stovicek@karlin.mff.cuni.cz
- Received by editor(s): October 1, 2005
- Received by editor(s) in revised form: September 9, 2006
- Published electronically: August 30, 2007
- Additional Notes: The first author was supported by Università di Padova (Progetto di Ateneo CDPA048343 “Decomposition and tilting theory in modules, derived and cluster categories”).
The second author was supported by a grant of the Industrie Club Duesseldorf, GAČR 201/05/H005, and the research project MSM 0021620839. - Communicated by: Martin Lorenz
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3771-3781
- MSC (2000): Primary 16D90, 16D30; Secondary 03E75, 16G99
- DOI: https://doi.org/10.1090/S0002-9939-07-08911-3
- MathSciNet review: 2341926