Examples of Fano varieties of index one that are not birationally rigid
HTML articles powered by AMS MathViewer
- by Ana-Maria Castravet
- Proc. Amer. Math. Soc. 135 (2007), 3783-3788
- DOI: https://doi.org/10.1090/S0002-9939-07-08948-4
- Published electronically: September 12, 2007
- PDF | Request permission
Abstract:
A conjecture of Pukhlikov states that a smooth Fano variety of dimension at least 4 and index one is birationally rigid. We show that a general member of the linear system given by the ample generator of the Picard group of the moduli space of stable, rank 2 bundles with fixed determinant of odd degree on a curve of genus at least 3 is not birationally rigid.References
- Aaron Bertram, Moduli of rank-$2$ vector bundles, theta divisors, and the geometry of curves in projective space, J. Differential Geom. 35 (1992), no. 2, 429–469. MR 1158344
- Sonia Brivio and Alessandro Verra, The theta divisor of $\textrm {SU}_C(2,2d)^s$ is very ample if $C$ is not hyperelliptic, Duke Math. J. 82 (1996), no. 3, 503–552. MR 1387683, DOI 10.1215/S0012-7094-96-08222-8
- Ana-Maria Castravet, Rational families of vector bundles on curves, Internat. J. Math. 15 (2004), no. 1, 13–45. MR 2039210, DOI 10.1142/S0129167X0400220X
- Alessio Corti, Singularities of linear systems and $3$-fold birational geometry, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 259–312. MR 1798984
- de Fernex, T., Adjunction beyond thresholds and birationally rigid hypersurfaces; arxiv:math. AG/0604213
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett. 10 (2003), no. 2-3, 219–236. MR 1981899, DOI 10.4310/MRL.2003.v10.n2.a9
- J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313, DOI 10.1007/BF01850655
- Iskovskikh, V.A., Manin Ju. I., Three-dimensional quartics and counterexamples to the Luroth problem, Math. USSR-Sb., 15 (1971), 141–166
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625
- P. E. Newstead, Characteristic classes of stable bundles of rank $2$ over an algebraic curve, Trans. Amer. Math. Soc. 169 (1972), 337–345. MR 316452, DOI 10.1090/S0002-9947-1972-0316452-9
- S. Ramanan, The moduli spaces of vector bundles over an algebraic curve, Math. Ann. 200 (1973), 69–84. MR 325615, DOI 10.1007/BF01578292
- Aleksandr V. Pukhlikov, Birational automorphisms of Fano hypersurfaces, Invent. Math. 134 (1998), no. 2, 401–426. MR 1650332, DOI 10.1007/s002220050269
- A. V. Pukhlikov, Birationally rigid double Fano hypersurfaces, Mat. Sb. 191 (2000), no. 6, 101–126 (Russian, with Russian summary); English transl., Sb. Math. 191 (2000), no. 5-6, 883–908. MR 1777571, DOI 10.1070/SM2000v191n06ABEH000485
- A. V. Pukhlikov, Birationally rigid Fano complete intersections, J. Reine Angew. Math. 541 (2001), 55–79. MR 1876285, DOI 10.1515/crll.2001.095
- Aleksandr V. Pukhlikov, Birationally rigid Fano varieties, The Fano Conference, Univ. Torino, Turin, 2004, pp. 659–681. MR 2112597
Bibliographic Information
- Ana-Maria Castravet
- Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
- Address at time of publication: Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
- MR Author ID: 730339
- Email: noni@math.utexas.edu, noni@math.umass.edu
- Received by editor(s): May 5, 2006
- Received by editor(s) in revised form: September 17, 2006
- Published electronically: September 12, 2007
- Communicated by: Ted Chinburg
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3783-3788
- MSC (2000): Primary 14E07; Secondary 14H60
- DOI: https://doi.org/10.1090/S0002-9939-07-08948-4
- MathSciNet review: 2341927