Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions
HTML articles powered by AMS MathViewer
- by Phan Văn Tuộc
- Proc. Amer. Math. Soc. 135 (2007), 3933-3941
- DOI: https://doi.org/10.1090/S0002-9939-07-08978-2
- Published electronically: August 2, 2007
- PDF | Request permission
Abstract:
We consider a strongly coupled nonlinear parabolic system which arises in population dynamics in $n$-dimensional domains ($n\geq 1$). Global existence of classical solutions under certain restrictions on the coefficients is established.References
- Herbert Amann, Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal. 12 (1988), no. 9, 895–919. MR 960634, DOI 10.1016/0362-546X(88)90073-9
- Herbert Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations 3 (1990), no. 1, 13–75. MR 1014726
- Herbert Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z. 202 (1989), no. 2, 219–250. MR 1013086, DOI 10.1007/BF01215256
- H. Amann, Abstract methods in differential equations, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), no. 1, 89–105 (English, with English and Spanish summaries). MR 2037227
- Y. S. Choi, Roger Lui, and Yoshio Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion, Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1193–1200. MR 1974423, DOI 10.3934/dcds.2003.9.1193
- Y. S. Choi, Roger Lui, and Yoshio Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst. 10 (2004), no. 3, 719–730. MR 2018876, DOI 10.3934/dcds.2004.10.719
- Emmanuele DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993. MR 1230384, DOI 10.1007/978-1-4612-0895-2
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
- Gary M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1465184, DOI 10.1142/3302
- Dung Le and Toan Trong Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension, Proc. Amer. Math. Soc. 133 (2005), no. 7, 1985–1992. MR 2137864, DOI 10.1090/S0002-9939-05-07867-6
- Yi Li and Chunshan Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains, Discrete Contin. Dyn. Syst. 12 (2005), no. 2, 185–192. MR 2122161, DOI 10.3934/dcds.2005.12.185
- Yuan Lou, Wei-Ming Ni, and Yaping Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dynam. Systems 4 (1998), no. 2, 193–203. MR 1616969, DOI 10.3934/dcds.1998.4.193
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
- Nanako Shigesada, Kohkichi Kawasaki, and Ei Teramoto, Spatial segregation of interacting species, J. Theoret. Biol. 79 (1979), no. 1, 83–99. MR 540951, DOI 10.1016/0022-5193(79)90258-3
- J. Smoller, Shock Waves and Reaction-Diffusion Equations. Springer, New York (1983).
Bibliographic Information
- Phan Văn Tuộc
- Affiliation: School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455
- MR Author ID: 736255
- Email: phan@math.umn.edu
- Received by editor(s): April 12, 2006
- Received by editor(s) in revised form: October 8, 2006
- Published electronically: August 2, 2007
- Communicated by: David S. Tartakoff
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 3933-3941
- MSC (2000): Primary 35B50, 35K50, 35K55, 35K57
- DOI: https://doi.org/10.1090/S0002-9939-07-08978-2
- MathSciNet review: 2341943