Submanifolds of real algebraic varieties
HTML articles powered by AMS MathViewer
- by W. Kucharz
- Proc. Amer. Math. Soc. 136 (2008), 55-60
- DOI: https://doi.org/10.1090/S0002-9939-07-08944-7
- Published electronically: September 25, 2007
- PDF | Request permission
Abstract:
By the Nash-Tognoli theorem, each compact smooth manifold $M$ is diffeomorphic to a nonsingular real algebraic set, called an algebraic model of $M$. We construct algebraic models $X$ of $M$ with controlled behavior of the group of cohomology classes represented by algebraic subsets of $X$.References
- Selman Akbulut and Henry King, Topology of real algebraic sets, Mathematical Sciences Research Institute Publications, vol. 25, Springer-Verlag, New York, 1992. MR 1225577, DOI 10.1007/978-1-4613-9739-7
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- Jacek Bochnak and Wojciech Kucharz, On homology classes represented by real algebraic varieties, Singularities Symposium—Łojasiewicz 70 (Kraków, 1996; Warsaw, 1996) Banach Center Publ., vol. 44, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 21–35. MR 1677394
- Jacek Bochnak and Wojciech Kucharz, On approximation of smooth submanifolds by nonsingular real algebraic subvarieties, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 685–690 (English, with English and French summaries). MR 2032984, DOI 10.1016/j.ansens.2003.04.001
- Armand Borel and André Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461–513 (French). MR 149503, DOI 10.24033/bsmf.1571
- Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1997. Corrected third printing of the 1993 original. MR 1700700, DOI 10.1007/978-1-4612-0647-7
- Pierre E. Conner, Differentiable periodic maps, 2nd ed., Lecture Notes in Mathematics, vol. 738, Springer, Berlin, 1979. MR 548463, DOI 10.1007/BFb0063217
- Johannes Huisman and Frédéric Mangolte, Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety, Topology 44 (2005), no. 1, 63–71. MR 2104001, DOI 10.1016/j.top.2004.03.003
- János Kollár, The topology of real and complex algebraic varieties, Taniguchi Conference on Mathematics Nara ’98, Adv. Stud. Pure Math., vol. 31, Math. Soc. Japan, Tokyo, 2001, pp. 127–145. MR 1865090, DOI 10.2969/aspm/03110127
- W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr. 180 (1996), 135–140. MR 1397672, DOI 10.1002/mana.3211800108
- W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, J. Algebraic Geom. 11 (2002), no. 1, 101–127. MR 1865915, DOI 10.1090/S1056-3911-01-00292-2
- John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405–421. MR 50928, DOI 10.2307/1969649
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
- A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 167–185. MR 396571
Bibliographic Information
- W. Kucharz
- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-1141
- Email: kucharz@math.unm.edu
- Received by editor(s): September 10, 2005
- Received by editor(s) in revised form: September 28, 2006
- Published electronically: September 25, 2007
- Communicated by: Paul Goerss
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 55-60
- MSC (2000): Primary 14P05, 14C25
- DOI: https://doi.org/10.1090/S0002-9939-07-08944-7
- MathSciNet review: 2350388