Approximate antilinear eigenvalue problems and related inequalities
HTML articles powered by AMS MathViewer
- by Stephan Ramon Garcia
- Proc. Amer. Math. Soc. 136 (2008), 171-179
- DOI: https://doi.org/10.1090/S0002-9939-07-08945-9
- Published electronically: September 25, 2007
- PDF | Request permission
Abstract:
If $T$ is a complex symmetric operator on a separable complex Hilbert space $\mathcal H$, then the spectrum $\sigma (|T|)$ of $\sqrt {T^*T}$ can be characterized in terms of a certain approximate antilinear eigenvalue problem. This approach leads to a general inequality (applicable to any bounded operator $T:\mathcal H\rightarrow \mathcal H$), in terms of the spectra of the selfadjoint operators $\operatorname {Re} T$ and $\operatorname {Im} T$, restricting the possible location of elements of $\sigma (|T|)$. A sharp inequality for the operator norm is produced, and the extremal operators are shown to be complex symmetric.References
- Peter Arbenz and Michiel E. Hochstenbach, A Jacobi-Davidson method for solving complex symmetric eigenvalue problems, SIAM J. Sci. Comput. 25 (2004), no. 5, 1655–1673. MR 2087330, DOI 10.1137/S1064827502410992
- Ilan Bar-On and Victor Ryaboy, Fast diagonalization of large and dense complex symmetric matrices, with applications to quantum reaction dynamics, SIAM J. Sci. Comput. 18 (1997), no. 5, 1412–1435. MR 1465664, DOI 10.1137/S1064827594269056
- Hari Bercovici, Operator theory and arithmetic in $H^\infty$, Mathematical Surveys and Monographs, vol. 26, American Mathematical Society, Providence, RI, 1988. MR 954383, DOI 10.1090/surv/026
- Chevrot, N., Fricain, E., Timotin, D., The characteristic function of a complex symmetric contraction, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2877–2886.
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- Carl H. FitzGerald and Roger A. Horn, On quadratic and bilinear forms in function theory, Proc. London Math. Soc. (3) 44 (1982), no. 3, 554–576. MR 656249, DOI 10.1112/plms/s3-44.3.554
- Gantmacher, F.R., The Theory of Matrices (Vol. 2), Chelsea, New York, 1989.
- Stephan Ramon Garcia, Conjugation and Clark operators, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 67–111. MR 2198373, DOI 10.1090/conm/393/07372
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285–1315. MR 2187654, DOI 10.1090/S0002-9947-05-03742-6
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285–1315. MR 2187654, DOI 10.1090/S0002-9947-05-03742-6
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952, DOI 10.1007/978-1-4684-9330-6
- V. I. Hasanov, An iterative method for solving the spectral problem of complex symmetric matrices, Comput. Math. Appl. 47 (2004), no. 4-5, 529–540. MR 2051327, DOI 10.1016/S0898-1221(04)90043-0
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183, DOI 10.1017/CBO9780511810817
- Victoria E. Howle and Stephen A. Vavasis, An iterative method for solving complex-symmetric systems arising in electrical power modeling, SIAM J. Matrix Anal. Appl. 26 (2005), no. 4, 1150–1178. MR 2178216, DOI 10.1137/S0895479800370871
- N. Jacobson, Normal Semi-Linear Transformations, Amer. J. Math. 61 (1939), no. 1, 45–58. MR 1507359, DOI 10.2307/2371384
- Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002. Hardy, Hankel, and Toeplitz; Translated from the French by Andreas Hartmann. MR 1864396
- Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR 1949210, DOI 10.1007/978-0-387-21681-2
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- Stefan Reitzinger, Ute Schreiber, and Ursula van Rienen, Algebraic multigrid for complex symmetric matrices and applications, J. Comput. Appl. Math. 155 (2003), no. 2, 405–421. MR 1984298, DOI 10.1016/S0377-0427(02)00877-4
- Issai Schur, Ein Satz ueber quadratische Formen mit komplexen Koeffizienten, Amer. J. Math. 67 (1945), 472–480 (German). MR 14048, DOI 10.2307/2371974
- N. H. Scott, A new canonical form for complex symmetric matrices, Proc. Roy. Soc. London Ser. A 441 (1993), no. 1913, 625–640. MR 1225775, DOI 10.1098/rspa.1993.0083
- N. H. Scott, A theorem on isotropic null vectors and its application to thermoelasticity, Proc. Roy. Soc. London Ser. A 440 (1993), no. 1909, 431–442. MR 1232840, DOI 10.1098/rspa.1993.0025
- Carl Ludwig Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1–86. MR 8094, DOI 10.2307/2371774
- Takagi, T., On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau, Japan J. Math. 1 (1925), 83-93.
- Wellstein, J., Über symmetrische, alternierende und orthogonale Normalformen von Matrizen, J. Reine Angew. Math. 163 (1930), 166–182.
Bibliographic Information
- Stephan Ramon Garcia
- Affiliation: Department of Mathematics, Pomona College, 610 North College Avenue, Claremont, California 91711
- MR Author ID: 726101
- Email: Stephan.Garcia@pomona.edu
- Received by editor(s): September 11, 2006
- Received by editor(s) in revised form: September 28, 2006
- Published electronically: September 25, 2007
- Additional Notes: This work was partially supported by National Science Foundation Grant DMS-0638789.
- Communicated by: Joseph A. Ball
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 171-179
- MSC (2000): Primary 47A30
- DOI: https://doi.org/10.1090/S0002-9939-07-08945-9
- MathSciNet review: 2350402