Common hypercyclic vectors for families of operators
HTML articles powered by AMS MathViewer
- by Eva A. Gallardo-Gutierrez and Jonathan R. Partington
- Proc. Amer. Math. Soc. 136 (2008), 119-126
- DOI: https://doi.org/10.1090/S0002-9939-07-09053-3
- Published electronically: September 25, 2007
- PDF | Request permission
Abstract:
We provide a criterion for the existence of a residual set of common hypercyclic vectors for an uncountable family of hypercyclic operators which is based on a previous one given by Costakis and Sambarino. As an application, we get common hypercyclic vectors for a particular family of hypercyclic scalar multiples of the adjoint of a multiplier in the Hardy space, generalizing recent results by Abakumov and Gordon and also Bayart. The criterion is applied to other specific families of operators.References
- Evgeny Abakumov and Julia Gordon, Common hypercyclic vectors for multiples of backward shift, J. Funct. Anal. 200 (2003), no. 2, 494–504. MR 1979020, DOI 10.1016/S0022-1236(02)00030-7
- Frédéric Bayart, Common hypercyclic vectors for composition operators, J. Operator Theory 52 (2004), no. 2, 353–370. MR 2119275
- Frédéric Bayart and Sophie Grivaux, Hypercyclicité: le rôle du spectre ponctuel unimodulaire, C. R. Math. Acad. Sci. Paris 338 (2004), no. 9, 703–708 (French, with English and French summaries). MR 2065378, DOI 10.1016/j.crma.2004.02.012
- Frédéric Bayart and Sophie Grivaux, Hypercyclicity and unimodular point spectrum, J. Funct. Anal. 226 (2005), no. 2, 281–300. MR 2159459, DOI 10.1016/j.jfa.2005.06.001
- Paul S. Bourdon and Joel H. Shapiro, Spectral synthesis and common cyclic vectors, Michigan Math. J. 37 (1990), no. 1, 71–90. MR 1042515, DOI 10.1307/mmj/1029004067
- I. Chalendar and J. R. Partington, On the structure of invariant subspaces for isometric composition operators on $H^2(\Bbb D)$ and $H^2(\Bbb C_+)$, Arch. Math. (Basel) 81 (2003), no. 2, 193–207. MR 2009562, DOI 10.1007/s00013-003-0533-6
- George Costakis and Martin Sambarino, Genericity of wild holomorphic functions and common hypercyclic vectors, Adv. Math. 182 (2004), no. 2, 278–306. MR 2032030, DOI 10.1016/S0001-8708(03)00079-3
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- K.-G. Grosse-Erdmann, Recent developments in hypercyclicity, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), no. 2, 273–286 (English, with English and Spanish summaries). MR 2068180
- J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23, (1925) 481–519.
- Jonathan R. Partington, Linear operators and linear systems, London Mathematical Society Student Texts, vol. 60, Cambridge University Press, Cambridge, 2004. An analytical approach to control theory. MR 2158502, DOI 10.1017/CBO9780511616693
- S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22. MR 241956, DOI 10.4064/sm-32-1-17-22
- Héctor N. Salas, Supercyclicity and weighted shifts, Studia Math. 135 (1999), no. 1, 55–74. MR 1686371, DOI 10.4064/sm-135-1-55-74
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007
Bibliographic Information
- Eva A. Gallardo-Gutierrez
- Affiliation: Departamento de Matemáticas, Universidad de Zaragoza e IUMA, Plaza San Francisco s/n, 50009 Zaragoza, Spain
- MR Author ID: 680697
- Email: eva@unizar.es
- Jonathan R. Partington
- Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- Email: J.R.Partington@leeds.ac.uk
- Received by editor(s): August 15, 2006
- Published electronically: September 25, 2007
- Additional Notes: This work was partially supported by Plan Nacional I+D grant no. MTM2006-06431, Gobierno de Aragón research group Análisis Matemático y Aplicaciones, ref. DGA E-64 and a Scheme 4 grant from the London Mathematical Society
- Communicated by: Joseph Ball
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 119-126
- MSC (2000): Primary 47A16; Secondary 47B33, 47B37
- DOI: https://doi.org/10.1090/S0002-9939-07-09053-3
- MathSciNet review: 2350396