A Müntz space having no complement in $L_{1}$
HTML articles powered by AMS MathViewer
- by Ihab Al Alam
- Proc. Amer. Math. Soc. 136 (2008), 193-201
- DOI: https://doi.org/10.1090/S0002-9939-07-09090-9
- Published electronically: October 11, 2007
- PDF | Request permission
Abstract:
in $C([0,1])$. In the present paper, we prove that there is a Müntz space not complemented in $L_{1}([0,1])$.References
- Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR 1367960, DOI 10.1007/978-1-4612-0793-1
- Leonard E. Dor, On projections in $L_{1}$, Ann. of Math. (2) 102 (1975), no. 3, 463–474. MR 420244, DOI 10.2307/1971039
- Ernst Görlich and Alfred P. Rohs, Asymptotic bounds for projection operators on Lebesgue spaces, Integral Transform. Spec. Funct. 3 (1995), no. 2, 85–98. MR 1410597, DOI 10.1080/10652469508819068
- E. Görlich and A. P. Rohs, Bounds for relative projection constants in $L^1(-1,1)$, Constr. Approx. 14 (1998), no. 4, 589–597. MR 1646559, DOI 10.1007/s003659900091
- Vladimir I. Gurariy and Wolfgang Lusky, Geometry of Müntz spaces and related questions, Lecture Notes in Mathematics, vol. 1870, Springer-Verlag, Berlin, 2005. MR 2190706, DOI 10.1007/11551621
- V. Gurariĭ and V. I. Macaev, Lacunary power sequences in spaces $C$ and $L_{p}$, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 3–14 (Russian). MR 0190703
- Donald J. Newman, A Müntz space having no complement, J. Approx. Theory 40 (1984), no. 4, 351–354. MR 740647, DOI 10.1016/0021-9045(84)90009-1
- Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. MR 270122, DOI 10.4064/sm-37-1-13-36
- Laurent Schwartz, Étude des sommes d’exponentielles réelles, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 959, Hermann & Cie, Paris, 1943 (French). MR 0014502
Bibliographic Information
- Ihab Al Alam
- Affiliation: Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé U.M.R. CNRS 8524, U.F.R. de Mathématiques, 59 655 Villeneuve D’Ascq Cedex, France
- Email: Ihab.Alalam@math.univ-lille1.fr
- Received by editor(s): October 10, 2006
- Published electronically: October 11, 2007
- Communicated by: Nicole Tomczak-Jaegermann
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 193-201
- MSC (2000): Primary 41A10, 41A17; Secondary 46B20, 46E15
- DOI: https://doi.org/10.1090/S0002-9939-07-09090-9
- MathSciNet review: 2350404