ON THE DISTRIBUTION OF KLOOSTERMAN SUMS

IGOR E. SHPARLINSKI

(Communicated by Wen-Ching Winnie Li)

Abstract. For a prime p, we consider Kloosterman sums

$$K_p(a) = \sum_{x \in \mathbb{F}_p^*} \exp(2\pi i (x + ax^{-1})/p), \quad a \in \mathbb{F}_p^*,$$

over a finite field of p elements. It is well known that due to results of Deligne, Katz and Sarnak, the distribution of the sums $K_p(a)$ when a runs through \mathbb{F}_p^* is in accordance with the Sato–Tate conjecture. Here we show that the same holds where a runs through the sums $a = u + v$ for $u \in \mathcal{U}, \ v \in \mathcal{V}$ for any two sufficiently large sets $\mathcal{U}, \mathcal{V} \subseteq \mathbb{F}_p^*$.

We also improve a recent bound on the nonlinearity of a Boolean function associated with the sequence of signs of Kloosterman sums.

1. Introduction

For a prime p we use \mathbb{F}_p to denote the finite field of p elements. For $a \in \mathbb{F}_p^*$ we consider the Kloosterman sum

$$K_p(a) = \sum_{x \in \mathbb{F}_p^*} e_p(x + ax^{-1}),$$

where

$$e_p(z) = \exp(2\pi iz/p)$$

(we identify \mathbb{F}_p with the set $\{0, 1, \ldots, p-1\}$). Since for the complex conjugated sum we have

$$\overline{K_p(a)} = \sum_{x \in \mathbb{F}_p^*} e_p(-x - ax^{-1}) = K_p(a),$$

the values of $K_p(a)$ are real.

According to the Weil bound, see [15],

$$|K_p(a)| \leq 2\sqrt{p}, \quad a \in \mathbb{F}_p^*.$$

Therefore, we can define the angles $\psi_p(a)$ by the relations

$$K_p(a) = 2\sqrt{p} \cos \psi_p(a) \quad \text{and} \quad 0 \leq \psi_p(a) \leq \pi.$$
The famous Sato–Tate conjecture asserts that for any fixed nonzero integer \(a \), when \(p \) varies, the angles \(\psi_p(a) \) are distributed according to the Sato–Tate density

\[
\mu_{\text{ST}}(\alpha, \beta) = \frac{2}{\pi} \int_{\alpha}^{\beta} \sin^2 \gamma \, d\gamma;
\]

see [1] [6] [7] [8] [9] [11] [12] [14] [15] [17] [18] for various modifications and generalisations of this conjecture and further references.

It is also known that when a sufficiently large prime \(p \) is fixed and \(a \) runs through \(\mathbb{F}_p^* \), then, as has been shown by Katz [11] Chapter 13, the work of Deligne on the Weil conjecture implies that the distribution of the sums \(K_p(a) \) is in accordance with the Sato–Tate density; see also [12]. Furthermore, a quantitative form of this result is given by Niederreiter [18]. Namely, if \(A_p(\alpha, \beta) \) is the set of \(a \in \mathbb{F}_p^* \) with \(\alpha \leq \psi_p(a) \leq \beta \), then by the main result of Niederreiter [18], we have

\[
\max_{0 \leq \alpha < \beta \leq \pi} \left| \# A_p(\alpha, \beta) - \mu_{\text{ST}}(\alpha, \beta) p \right| \ll p^{3/4}.
\]

Combining results of Fouvry, Michel, Rivat, and Sárközy [9] (with \(r = 1 \)) and of Niederreiter [18] Lemma 3, one can show that elements of \(A_p(\alpha, \beta) \) are uniformly distributed in the following sense. For any \(\lambda \in \mathbb{F}_p^* \) and integer \(M \) with \(1 \leq M \leq p - 1 \), we put

\[
A_p(\lambda, M; \alpha, \beta) = \{ a \in A_p(\alpha, \beta) : \lambda a \in [1, M] \}.
\]

Then for \(1 \leq M \leq p - 1 \), the following bound holds:

\[
\max_{\lambda \in \mathbb{F}_p^*} \max_{0 \leq \alpha < \beta \leq \pi} \left| \# A_p(\lambda, M; \alpha, \beta) - \mu(\alpha, \beta) M \right| \ll M^{1/2} p^{1/4} (\log p)^{1/2}.
\]

Fouvry, Michel, Rivat, and Sárközy [9] also remark that by combining a result of Fouvry and Michel [7] with the technique of Vaaler [20], one can show that

\[
\max_{0 \leq \alpha < \beta \leq \pi} \left| \# Q_p(\alpha, \beta) - \mu_{\text{ST}}(\alpha, \beta) p \right| \ll p^{3/4},
\]

where

\[
Q_p(\alpha, \beta) = \{ a \in \mathbb{F}_p : a^2 \in A_p(\alpha, \beta) \}.
\]

The same bound can also be obtained immediately if one applies the result of Niederreiter [18] Lemma 3 to the bound of Michel [17] Corollary 2.1 (see also [7] Lemma 2.1).

Here we show that the same type of distribution is preserved when \(a \) runs through the sums \(a = u + v \) where \(u \in U, v \in V \) for any two sufficiently large sets \(U, V \subseteq \mathbb{F}_p^* \). Namely, for any two sets \(U, V \subseteq \mathbb{F}_p^* \), we put

\[
\mathcal{W}_p(U, V; \alpha, \beta) = \{ (u, v) \in U \times V : u + v \in A_p(\alpha, \beta) \}.
\]

In particular, we obtain an asymptotic formula for \(\# \mathcal{W}_p(U, V; \alpha, \beta) \) which is nontrivial whenever

\[
\# U \# V \geq p^{3/2 + \varepsilon}
\]

for any fixed \(\varepsilon > 0 \) and sufficiently large \(p \).

Then, we also improve the upper bound of [19] on the nonlinearity of the Boolean function associated with the sequence of signs of Kloosterman sums; that is, for the function

\[
f(a) = \begin{cases} 0, & \text{if } K(a) > 0 \text{ or } a = 0, \\ 1, & \text{if } K(a) < 0, \end{cases} \quad a = 0, 1, \ldots, 2^n - 1,
\]
where \(n \) is defined by the inequalities
\[
2^n \leq p < 2^{n+1}.
\]

Various pseudorandom properties of the function \(f(a) \) have been studied by Fouvry, Michel, Rivat, and Sárközy [9]. Here we estimate one more characteristic of \(f(a) \) of cryptographic interest, which in fact has already been considered in [19] whose result we now improve.

We denote by \(\mathcal{B}_n \) the \(n \)-dimensional Boolean cube \(\mathcal{B}_n = \{0, 1\}^n \) and in a natural way identify its elements with the integers in the range \(0 \leq a \leq 2^n - 1 \) (and thus with a subset of \(\mathbb{F}_p \)).

We define the Fourier coefficients of \(f(a) \) as
\[
\hat{f}(r) = 2^{-n} \sum_{a \in \mathcal{B}_n} (-1)^{f(a) + \langle h, r \rangle}, \quad r \in \mathcal{B}_n,
\]
where \(\langle a, r \rangle \) denotes the inner product of \(a, r \in \mathcal{B}_n \). Furthermore, we recall that
\[
N(f) = 2^{n-1} - 2^{n-1} \max_{r \in \mathcal{B}_n} \left| \hat{f}(r) \right|
\]
is called the nonlinearity of \(f \) and is an important cryptographic characteristic; for example, see [5]. In particular, it is the smallest possible Hamming distance between the vector of values of \(f \) and the vector of values of a linear function in \(n \) variables over \(\mathbb{F}_2 \).

Several results about some measures of pseudorandomness of the sequence of signs of Kloosterman sums have recently been obtained by Fouvry, Michel, Rivat, and Sárközy [9]. Motivated by (and actually using) the results of [9], the bound
\[
N(f) = 2^{n-1} \left(1 + O \left(2^{-n/24} n^{1/12} \right) \right)
\]
obtained in [19]. Here again we use some results of [9], but in a slightly different way, and we improve this bound.

2. Distribution of elements of \(\mathcal{A}_p(\alpha, \beta) \)

For a sequence of \(N \) real numbers \(\gamma_1, \ldots, \gamma_N \in [0, 1) \) the discrepancy is defined by
\[
D = \max_{0 \leq \gamma \leq 1} \left| \frac{T(\gamma, N)}{N} - \gamma \right|
\]
where \(T(\gamma, N) \) is the number of \(n \leq N \) such that \(\gamma_n \leq \gamma \).

We also recall our agreement that the elements of \(\mathbb{F}_p \) have canonical representation as integers of the interval \([0, p-1] \). Thus for any field element \(c \in \mathbb{F}_p \), we interpret \(c/p \) as a rational number in the interval \([0, 1) \). Hence, for \(\lambda \in \mathbb{F}_p^* \) we can define the discrepancy \(D_p(\lambda; \alpha, \beta) \) of the sequence
\[
\frac{\lambda a}{p}, \quad a \in \mathcal{A}_p(\alpha, \beta).
\]
Then the bound (2) implies that
\[
\max_{1 \leq M \leq p-1} \max_{\lambda \in \mathbb{F}_p^*} \left| \# \mathcal{A}_p(\lambda, M; \alpha, \beta) - \mu(\alpha, \beta)M \right| \ll p^{3/4} (\log p)^{1/2},
\]
which can be reformulated in the following form:
Lemma 1. We have
\[\max_{\lambda \in \mathbb{F}_p^*} \max_{0 \leq \alpha < \beta \leq \pi} D_p(\lambda; \alpha, \beta) \ll p^{-1/4} (\log p)^{1/2}. \]

Our main tool is a bound of exponential sums with elements of \(\mathcal{A}_p(\alpha, \beta) \). For \(\lambda \in \mathbb{F}_p^* \) we define
\[S_p(\lambda; \alpha, \beta) = \sum_{a \in \mathcal{A}_p(\alpha, \beta)} e_p(\lambda a). \]

Lemma 2. We have
\[\max_{\lambda \in \mathbb{F}_p^*} \max_{0 \leq \alpha < \beta \leq \pi} |S_p(\lambda; \alpha, \beta)| \ll p^{3/4} (\log p)^{1/2}. \]

Proof. We recall that for any real smooth function \(F(\gamma) \) defined on the interval \([0, 1]\) and any sequence of \(N \) real numbers \(\gamma_1, \ldots, \gamma_N \in [0, 1] \) of discrepancy \(D \), we have
\[\frac{1}{N} \sum_{n=1}^{N} F(\gamma_n) = \int_0^1 F(\gamma) d\gamma + O(D \max_{0 \leq \gamma \leq 1} |F'(\gamma)|), \]
see [13, Chapter 2, Theorem 5.4]. Writing
\[S_p(\lambda; \alpha, \beta) = \sum_{a \in \mathcal{A}_p(\alpha, \beta)} \cos \left(2\pi \frac{\lambda a}{p} \right) + i \sum_{a \in \mathcal{A}_p(\alpha, \beta)} \sin \left(2\pi \frac{\lambda a}{p} \right) \]
and applying Lemma 1, we obtain the desired bound. \(\square \)

3. Sato–Tate conjecture for sum sets

Theorem 3. For any two sets \(U, V \subseteq \mathbb{F}_p^* \), we have
\[\max_{0 \leq \alpha < \beta \leq \pi} \left| \# W_p(U, V; \alpha, \beta) - \mu_{ST}(\alpha, \beta) \# U \# V \right| \leq \sqrt{\# U \# V} p^{3/4} (\log p)^{1/2}. \]

Proof. Using the identity
\[\left(5\right) \quad \frac{1}{p} \sum_{\lambda \in \mathbb{F}_p^*} e_p(\lambda c) = \begin{cases} 1 & \text{if } c = 0, \\ 0 & \text{if } c \in \mathbb{F}_p^*, \end{cases} \]
we write
\[\# W_p(U, V; \alpha, \beta) = \sum_{u \in U} \sum_{v \in V} \sum_{a \in \mathcal{A}_p(\alpha, \beta)} \frac{1}{p} \sum_{\lambda \in \mathbb{F}_p^*} e_p(\lambda(u + v - a)) \]
\[= \frac{1}{p} \sum_{\lambda \in \mathbb{F}_p^*} S_p(-\lambda; \alpha, \beta) \sum_{u \in U} e_p(\lambda u) \sum_{v \in V} e_p(\lambda v). \]

Separating the term \(\# \mathcal{A}_p(\alpha, \beta) \# U \# V / p \) corresponding to \(\lambda = 0 \), we derive
\[\left(6\right) \quad \# W_p(U, V; \alpha, \beta) = \frac{\# \mathcal{A}_p(\alpha, \beta) \# U \# V}{p} + O(R), \]
where
\[R = \frac{1}{p} \sum_{\lambda \in \mathbb{F}_p^*} \left| S_p(-\lambda; \alpha, \beta) \right| \left| \sum_{u \in U} e_p(\lambda u) \right| \left| \sum_{v \in V} e_p(\lambda v) \right|. \]
Collecting the above estimates together, we obtain

\[R \leq p^{-1/4}(\log p)^{1/2} \sum_{\lambda \in \mathbb{F}_p^*} \left| \sum_{u \in U} e_p(\lambda u) \right| \left| \sum_{v \in V} e_p(\lambda v) \right| \]

\[\leq p^{-1/4}(\log p)^{1/2} \left(\sum_{\lambda \in \mathbb{F}_p^*} \left| \sum_{u \in U} e_p(\lambda u) \right|^2 \right)^{1/2} \left(\sum_{\lambda \in \mathbb{F}_p^*} \left| \sum_{v \in V} e_p(\lambda v) \right|^2 \right)^{1/2}. \]

Furthermore, by Lemma 2 we see that

\[\sum_{\lambda \in \mathbb{F}_p^*} \left| \sum_{u \in U} e_p(\lambda u) \right|^2 \leq \sum_{\lambda \in \mathbb{F}_p^*} \left| \sum_{u \in U} e_p(\lambda u) \right|^2 = \sum_{\lambda \in \mathbb{F}_p^*} \sum_{u_1, u_2 \in U} e_p(\lambda(u_1 - u_2)) = p\#U. \]

Similarly,

\[\sum_{\lambda \in \mathbb{F}_p^*} \left| \sum_{v \in V} e_p(\lambda v) \right|^2 \leq p\#V. \]

Collecting the above estimates together, we obtain

\[R \leq \sqrt{\#U\#Vp^{3/4}(\log p)^{1/2}}, \]

which after substitution in (1) and using (11) leads us to the bound

\[|\#W_p(U, V; \alpha, \beta) - \mu_{ST}(\alpha, \beta)\#U\#V| \leq \#U\#Vp^{-1/4} + \sqrt{\#U\#Vp^{3/4}(\log p)^{1/2}}. \]

It remains to note that

\[\#U\#Vp^{-1/4} \leq \sqrt{\#U\#Vp^{3/4}}, \]

thus the first term never dominates. \qed

Clearly the asymptotic formula of Theorem 3 is nontrivial under condition (3).

4. NONLINEARITY

Theorem 4. For the nonlinearity \(N(f) \) of the Boolean function \(f(h) \) given by (4), we have

\[N(f) = 2^{n-1} \left(1 + O \left(2^{-n/16}n^{1/8} \right) \right). \]

Proof. We estimate the Fourier coefficients \(\hat{f}(k) \) of \(f \) by using the result that for any integers \(M, h_1, h_2 \) with \(0 \leq M \leq M + c_1 < M + c_2 < 2^n \) we have

\[\sum_{b=0}^{M-1} (-1)^{f(b+c_1)+f(b+c_2)} \lesssim M^{2/3}p^{1/6}(\log p)^{1/3} + p^{1/2}\log p, \]

which is a combination of [9, Lemma 2.3] with a special case \(r = 2 \) of [9, Lemma 4.4]. In fact, the above bound can be simplified as

\[\sum_{b=0}^{M-1} (-1)^{f(b+c_1)+f(b+c_2)} \lesssim M^{2/3}p^{1/6}(\log p)^{1/3}, \]

(since for \(M \leq p^{1/2}\log p \) the bound (7) is trivial and for \(M > p^{1/2}\log p \) we also have \(M^{2/3}p^{1/6}(\log p)^{1/3} > p^{1/2}\log p \)).
We now fix some \(m \leq n \) and write \(a, r \in \mathcal{B}_n \) as
\[
a = b + 2^m c \quad \text{and} \quad r = s + 2^m t,
\]
with \(0 \leq b, s < 2^m \) and \(0 \leq c, t < 2^{n-m} \). In particular
\[
\langle a, r \rangle = \langle b, s \rangle + \langle c, t \rangle.
\]
Therefore,
\[
|\hat{f}(r)| = |\hat{f}(s + 2^m t)| = \left| 2^{-n} \sum_{b=0}^{2^m-1} \sum_{c=0}^{2^{n-m}-1} (-1)^{f(b+2^m c)+(b,s)+(c,t)} \right|
\]
\[
\leq 2^{-n} \sum_{b=0}^{2^m-1} \sum_{c=0}^{2^{n-m}-1} (-1)^{f(b+2^m c)+(c,t)}.
\]
By the Cauchy inequality we obtain
\[
|\hat{f}(r)|^2 \leq 2^{m-2n} \sum_{b=0}^{2^m-1} \left| \sum_{j=0}^{2^{n-m}-1} (-1)^{f(b+2^m c)+(c,t)} \right|^2
\]
\[
= 2^{m-2n} \sum_{b=0}^{2^m-1} \sum_{c_1, c_2=0}^{2^{n-m}-1} (-1)^{f(b+2^m c_1)+f(b+2^m c_2)+(c_1,t)+(c_2,t)}
\]
\[
\leq 2^{m-2n} \sum_{c_1, c_2=0}^{2^{n-m}-1} \left| \sum_{b=0}^{2^m-1} (-1)^{f(b+2^m c_1)+f(b+2^m c_2)} \right|.
\]
For \(2^{n-m} \) choices of \(c_1 = c_2 \), the sums over \(b \) are equal to \(2^m \). For the other choices of \(c_1 \) and \(c_2 \) we can use the bound (7), getting
\[
|\hat{f}(r)|^2 = O \left(2^{m-2n} \left(2^{n-m} 2^m + 2^{2(n-m)} 2^{2m/3} 2^{n/6} n^{1/3} \right) \right)
\]
\[
= O \left(2^{m-n} + 2^{n/6-m/3} n^{1/3} \right).
\]
We now define \(m \) by the inequalities
\[
2^m \leq 2^{7n/8} n^{1/4} < 2^{n+1}, \quad \text{and after simple calculations conclude the proof.}
\]

5. Comments

It seems very plausible that [17, Corollary 2.4] can be used to derive a nontrivial estimate for sums
\[
T_p(\chi; \alpha, \beta) = \sum_{a \in \mathcal{A}_p(\alpha, \beta)} \chi(a),
\]
with a nonprincipal multiplicative character \(\chi \) of \(\mathbb{F}_p^* \). In this case one can obtain a multiplicative analogue of our results and study the set
\[
\mathcal{Z}_p(\mathcal{U}, \mathcal{V}; \alpha, \beta) = \{(u, v) \in \mathcal{U} \times \mathcal{V} : uv \in \mathcal{A}_p(\alpha, \beta)\}.
\]
Multidimensional analogues of our results which involve joint distributions of Kloosterman sums can be obtained as well.
Also, as a curiosity, we mention that Theorem 3 can be combined with the techniques of [2], [3], [4] to study sets of elements of the Beatty sequence \(\lfloor \vartheta m + \rho \rfloor \) (where \(\vartheta > 0 \) and \(\rho \) are real) which belong to \(\mathcal{A}_p(\alpha, \beta) \); that is, sets of the form

\[
B_p(\vartheta, \rho; M; \alpha, \beta) = \{ m \in [1, M] : \lfloor \vartheta m + \rho \rfloor \in \mathcal{A}_p(\alpha, \beta) \}.
\]

REFERENCES