## A cohomological characterization of Leibniz central extensions of Lie algebras

HTML articles powered by AMS MathViewer

- by Naihong Hu, Yufeng Pei and Dong Liu PDF
- Proc. Amer. Math. Soc.
**136**(2008), 437-447 Request permission

## Abstract:

Mainly motivated by Pirashvili’s spectral sequences on a Leibniz algebra, a cohomological characterization of Leibniz central extensions of Lie algebras is given. In particular, as applications, we obtain the cohomological version of Gao’s main theorem for Kac-Moody algebras and answer a question in an earlier paper by Liu and Hu (2004).## References

- E. Arbarello, C. De Concini, V. G. Kac, and C. Procesi,
*Moduli spaces of curves and representation theory*, Comm. Math. Phys.**117**(1988), no. 1, 1–36. MR**946992** - Stephen Berman,
*On derivations of Lie algebras*, Canadian J. Math.**28**(1976), no. 1, 174–180. MR**422370**, DOI 10.4153/CJM-1976-022-x - S. Berman,
*On the low-dimensional cohomology of some infinite-dimensional simple Lie algebras*, Pacific J. Math.**83**(1979), no. 1, 27–36. MR**555036** - J. M. Casas, E. Faro, and A. M. Vieites,
*Abelian extensions of Leibniz algebras*, Comm. Algebra**27**(1999), no. 6, 2833–2846. MR**1687285**, DOI 10.1080/00927879908826595 - Dragomir Ž. Đoković and Kaiming Zhao,
*Some infinite-dimensional simple Lie algebras in characteristic $0$ related to those of Block*, J. Pure Appl. Algebra**127**(1998), no. 2, 153–165. MR**1620712**, DOI 10.1016/S0022-4049(96)00171-5 - Rolf Farnsteiner,
*Central extensions and invariant forms of graded Lie algebras*, Algebras Groups Geom.**3**(1986), no. 4, 431–455. MR**901809** - Rolf Farnsteiner,
*Derivations and central extensions of finitely generated graded Lie algebras*, J. Algebra**118**(1988), no. 1, 33–45. MR**961324**, DOI 10.1016/0021-8693(88)90046-4 - Yun Gao,
*Central extensions of nonsymmetrizable Kac-Moody algebras over commutative algebras*, Proc. Amer. Math. Soc.**121**(1994), no. 1, 67–76. MR**1185261**, DOI 10.1090/S0002-9939-1994-1185261-3 - Yun Gao,
*The second Leibniz homology group for Kac-Moody Lie algebras*, Bull. London Math. Soc.**32**(2000), no. 1, 25–33. MR**1718757**, DOI 10.1112/S0024609399006323 - Allahtan Victor Gnedbaye,
*Third homology groups of universal central extensions of a Lie algebra*, Afrika Mat. (3)**10**(1999), 46–63. MR**1693325** - Yohsuke Hagiwara and Tadayoshi Mizutani,
*Leibniz algebras associated with foliations*, Kodai Math. J.**25**(2002), no. 2, 151–165. MR**1913522**, DOI 10.2996/kmj/1071674438 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - E. Kirkman, C. Procesi, and L. Small,
*A $q$-analog for the Virasoro algebra*, Comm. Algebra**22**(1994), no. 10, 3755–3774. MR**1280096**, DOI 10.1080/00927879408825052 - Jean-Louis Koszul,
*Homologie et cohomologie des algèbres de Lie*, Bull. Soc. Math. France**78**(1950), 65–127 (French). MR**36511** - W. Li,
*$2$-Cocycles on the algebras of differential operators*, J. Algebra.**122**, (1989), 64–80. - Dong Liu and Naihong Hu,
*Leibniz central extensions on some infinite-dimensional Lie algebras*, Comm. Algebra**32**(2004), no. 6, 2385–2405. MR**2100478**, DOI 10.1081/AGB-120037228 - Jean-Louis Loday,
*Cyclic homology*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR**1217970**, DOI 10.1007/978-3-662-21739-9 - Jean-Louis Loday and Teimuraz Pirashvili,
*Universal enveloping algebras of Leibniz algebras and (co)homology*, Math. Ann.**296**(1993), no. 1, 139–158. MR**1213376**, DOI 10.1007/BF01445099 - Jerry M. Lodder,
*Leibniz cohomology for differentiable manifolds*, Ann. Inst. Fourier (Grenoble)**48**(1998), no. 1, 73–95 (English, with English and French summaries). MR**1614906** - Paolo Papi,
*Cohomology of tensor product of quantum planes*, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.**3**(1992), no. 1, 5–13 (English, with Italian summary). MR**1159994** - Teimuraz Pirashvili,
*On Leibniz homology*, Ann. Inst. Fourier (Grenoble)**44**(1994), no. 2, 401–411 (English, with English and French summaries). MR**1296737** - Robert Lee Wilson,
*Euclidean Lie algebras are universal central extensions*, Lie algebras and related topics (New Brunswick, N.J., 1981) Lecture Notes in Math., vol. 933, Springer, Berlin-New York, 1982, pp. 210–213. MR**675118** - K. Zhao,
*Automorphism groups of the algebras of differential operators*, J. of Capital Normal Uni. 15, (1994), 1–7. - Linsheng Zhu and Daoji Meng,
*Quadratic Lie algebras and commutative associative algebras*, Comm. Algebra**29**(2001), no. 5, 2249–2268. MR**1837975**, DOI 10.1081/AGB-100002182 - Linsheng Zhu and Daoji Meng,
*Structure of degenerate Block algebras*, Algebra Colloq.**10**(2003), no. 1, 53–62. MR**1961506**, DOI 10.1007/s100110300007

## Additional Information

**Naihong Hu**- Affiliation: Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China
- MR Author ID: 351882
- Email: nhhu@euler.math.ecnu.edu.cn
**Yufeng Pei**- Affiliation: Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China
- Email: peiyufeng@gmail.com
**Dong Liu**- Affiliation: Department of Mathematics, Huzhou Teachers College, Zhejiang, Huzhou 313000, People’s Republic of China
- Email: liudong@hytc.zj.cn
- Received by editor(s): May 17, 2006
- Received by editor(s) in revised form: October 28, 2006
- Published electronically: October 24, 2007
- Additional Notes: This work is supported in part by the NNSF (Grants 10431040, 10671027, 10701019), the TRAPOYT and the FUDP from the MOE of China, and the SRSTP from the STCSM
- Communicated by: Dan M. Barbasch
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**136**(2008), 437-447 - MSC (2000): Primary 17A32, 17B56; Secondary 17B65
- DOI: https://doi.org/10.1090/S0002-9939-07-08985-X
- MathSciNet review: 2358481