Function representation of a noncommutative uniform algebra
HTML articles powered by AMS MathViewer
- by Krzysztof Jarosz
- Proc. Amer. Math. Soc. 136 (2008), 605-611
- DOI: https://doi.org/10.1090/S0002-9939-07-09033-8
- Published electronically: November 1, 2007
- PDF | Request permission
Abstract:
We construct a Gelfand type representation of a real noncommutative Banach algebra $A$ satisfying $\left \Vert f^{2}\right \Vert =\left \Vert f\right \Vert ^{2}$, for all $f\in A.$References
- Mati Abel and Krzysztof Jarosz, Noncommutative uniform algebras, Studia Math. 162 (2004), no. 3, 213–218. MR 2047651, DOI 10.4064/sm162-3-2
- Bernard Aupetit and Jaroslav Zemánek, On the spectral radius in real Banach algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 12, 969–973 (1979) (English, with Russian summary). MR 528979
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- Stefan Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104. MR 552464, DOI 10.1515/crll.1980.313.72
- R. A. Hirschfeld and W. Żelazko, On spectral norm Banach algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 195–199 (English, with Russian summary). MR 229043
- John C. Holladay, A note on the Stone-Weierstrass theorem for quaternions, Proc. Amer. Math. Soc. 8 (1957), 656–657. MR 87047, DOI 10.1090/S0002-9939-1957-0087047-7
- Krzysztof Jarosz, Ultraproducts and small bound perturbations, Pacific J. Math. 148 (1991), no. 1, 81–88. MR 1091531
- S. H. Kulkarni and B. V. Limaye, Real function algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 168, Marcel Dekker, Inc., New York, 1992. MR 1197884
- S. V. Lüdkovsky and F. van Oystaeyen, Differentiable functions of quaternion variables, Bull. Sci. Math. 127 (2003), no. 9, 755–796. MR 2015544, DOI 10.1016/S0007-4497(03)00063-0
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 199–224. MR 516081, DOI 10.1017/S0305004100055638
Bibliographic Information
- Krzysztof Jarosz
- Affiliation: Department of Mathematics and Statistics, Southern Illinois University, Edwardsville, Illinois 62026-1653
- MR Author ID: 93850
- Email: kjarosz@siue.edu
- Received by editor(s): October 31, 2005
- Received by editor(s) in revised form: November 24, 2006
- Published electronically: November 1, 2007
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 605-611
- MSC (2000): Primary 46H20, 46H05
- DOI: https://doi.org/10.1090/S0002-9939-07-09033-8
- MathSciNet review: 2358502