Hypercyclic and topologically mixing cosine functions on Banach spaces
HTML articles powered by AMS MathViewer
- by Antonio Bonilla and Pedro J. Miana
- Proc. Amer. Math. Soc. 136 (2008), 519-528
- DOI: https://doi.org/10.1090/S0002-9939-07-09036-3
- Published electronically: October 24, 2007
- PDF | Request permission
Abstract:
Our first aim in this paper is to give sufficient conditions for the hypercyclicity and topological mixing of a strongly continuous cosine function. We apply these results to study the cosine function associated to translation groups. We also prove that every separable infinite dimensional complex Banach space admits a topologically mixing uniformly continuous cosine family.References
- Shamim I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), no. 2, 384–390. MR 1469346, DOI 10.1006/jfan.1996.3093
- Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588, DOI 10.1007/978-3-0348-5075-9
- Teresa Bermúdez, Antonio Bonilla, José A. Conejero, and Alfredo Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math. 170 (2005), no. 1, 57–75. MR 2142183, DOI 10.4064/sm170-1-3
- Teresa Bermúdez, Antonio Bonilla, and Antonio Martinón, On the existence of chaotic and hypercyclic semigroups on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2435–2441. MR 1974641, DOI 10.1090/S0002-9939-02-06762-X
- Luis Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1003–1010. MR 1476119, DOI 10.1090/S0002-9939-99-04657-2
- Juan Bès and Alfredo Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), no. 1, 94–112. MR 1710637, DOI 10.1006/jfan.1999.3437
- José Bonet and Alfredo Peris, Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159 (1998), no. 2, 587–595. MR 1658096, DOI 10.1006/jfan.1998.3315
- Wolfgang Desch, Wilhelm Schappacher, and Glenn F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynam. Systems 17 (1997), no. 4, 793–819. MR 1468101, DOI 10.1017/S0143385797084976
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- F. Martínez-Giménez and A. Peris, Chaos for backward shift operators, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 8, 1703–1715. MR 1927407, DOI 10.1142/S0218127402005418
- R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in $L^{2}$, Studia Math. 54 (1975), no. 2, 149–159. MR 394137, DOI 10.4064/sm-54-2-149-159
- S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22. MR 241956, DOI 10.4064/sm-32-1-17-22
Bibliographic Information
- Antonio Bonilla
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain
- Email: abonilla@ull.es
- Pedro J. Miana
- Affiliation: Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
- MR Author ID: 672733
- Email: pjmiana@unizar.es
- Received by editor(s): July 17, 2006
- Published electronically: October 24, 2007
- Additional Notes: The first author is supported by MEC and FEDER MTM2005-07347 and MEC (Accion special) MTM2006-26627-E
The second author is supported by Project MTM2004-03036, DGI-FEDER, of the MCYT, Spain, and Project E-64, D. G. Aragón, Spain. - Communicated by: N. Tomczak-Jaegermann
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 519-528
- MSC (2000): Primary 47D09, 47A16
- DOI: https://doi.org/10.1090/S0002-9939-07-09036-3
- MathSciNet review: 2358492