Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The Stasheff model of a simply-connected manifold and the string bracket
HTML articles powered by AMS MathViewer

by A. Lazarev PDF
Proc. Amer. Math. Soc. 136 (2008), 735-745 Request permission

Abstract:

We revisit Stasheff’s construction of a minimal Lie-Quillen model of a simply-connected closed manifold $M$ using the language of infinity-algebras. This model is then used to construct a graded Lie bracket on the equivariant homology of the free loop space of $M$ minus a point similar to the Chas-Sullivan string bracket.
References
  • A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
  • M. Aubry, S. Halperin, J.-M. Lemaire. Poincaré duality models, preprint.
  • H. J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), no. 3, 219–242. MR 431172, DOI 10.1007/BF01425239
  • M. Chas, D. Sullivan. String topology. arXiv:math.GT/9911159.
  • K. Costello. Topological conformal field theories and Calabi-Yau categories. Adv. in Math., Vol. 210, 1, 165–214, 2007.
  • E. Getzler, J.D.S. Jones. Operads, Homotopy Algebra, and Iterated Integrals for double Loop Spaces. arXiv:hep-th/9403055.
  • John D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), no. 2, 403–423. MR 870737, DOI 10.1007/BF01389424
  • A. Hamilton, A. Lazarev. Homotopy algebras and noncommutative geometry. arXiv:math. QA/0410621.
  • Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gel′fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 173–187. MR 1247289
  • Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 97–121. MR 1341841
  • A. Lazarev, Hoschschild cohomology and moduli spaces of strongly homotopy associative algebras, Homology Homotopy Appl. 5 (2003), no. 1, 73–100. MR 1989615
  • M. Kontsevich, Y. Soibelman. Notes on A-infinity algebras, A-infinity categories and non-commutative geometry I. arXiv:math.RA/0606241.
  • Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR 1600246, DOI 10.1007/978-3-662-11389-9
  • Joseph Neisendorfer, Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces, Pacific J. Math. 74 (1978), no. 2, 429–460. MR 494641
  • James Stasheff, Rational Poincaré duality spaces, Illinois J. Math. 27 (1983), no. 1, 104–109. MR 684544
  • Ronald N. Umble, Homotopy conditions that determine rational homotopy type, J. Pure Appl. Algebra 60 (1989), no. 2, 205–217. MR 1020716, DOI 10.1016/0022-4049(89)90128-X
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55P62, 13D03, 57T30
  • Retrieve articles in all journals with MSC (2000): 55P62, 13D03, 57T30
Additional Information
  • A. Lazarev
  • Affiliation: Department of Mathematics, University of Leicester, Leicester LE1 7RH, England
  • Email: al179@le.ac.uk
  • Received by editor(s): December 30, 2005
  • Received by editor(s) in revised form: December 2, 2006
  • Published electronically: October 24, 2007
  • Additional Notes: This research was partially supported by the EPSRC grant No. GR/SO7148/01
  • Communicated by: Paul Goerss
  • © Copyright 2007 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 136 (2008), 735-745
  • MSC (2000): Primary 55P62; Secondary 13D03, 57T30
  • DOI: https://doi.org/10.1090/S0002-9939-07-09040-5
  • MathSciNet review: 2358516