Classification of escaping exponential maps
HTML articles powered by AMS MathViewer
- by Markus Förster, Lasse Rempe and Dierk Schleicher
- Proc. Amer. Math. Soc. 136 (2008), 651-663
- DOI: https://doi.org/10.1090/S0002-9939-07-09073-9
- Published electronically: November 1, 2007
- PDF | Request permission
Abstract:
We give a complete classification of the set of parameters $\kappa$ for which the singular value of $E_{\kappa }:z\mapsto \exp (z)+\kappa$ escapes to $\infty$ under iteration. In particular, we show that every path-connected component of this set is a curve to infinity.References
- Jan M. Aarts and Lex G. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (1993), no. 2, 897–918. MR 1182980, DOI 10.1090/S0002-9947-1993-1182980-3
- Mihai Bailesteanu, Horia Vlad Balan, and Dierk Schleicher, Hausdorff dimension of exponential parameter rays and their endpoints, arXiv:0704.3087 , conditionally accepted for publication in Nonlinearity.
- I. N. Baker and P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49–77. MR 752391, DOI 10.5186/aasfm.1984.0903
- Ranjit Bhattacharjee and Robert L. Devaney, Tying hairs for structurally stable exponentials, Ergodic Theory Dynam. Systems 20 (2000), no. 6, 1603–1617. MR 1804947, DOI 10.1017/S0143385700000882
- Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 8, 1517–1534. MR 1721835, DOI 10.1142/S0218127499001061
- Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Dynamical convergence of polynomials to the exponential, J. Differ. Equations Appl. 6 (2000), no. 3, 275–307. MR 1785056, DOI 10.1080/10236190008808229
- Robert L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 167–171. MR 741732, DOI 10.1090/S0273-0979-1984-15253-4
- Robert L. Devaney, Lisa R. Goldberg, and John H. Hubbard, A dynamical approximation to the exponential map by polynomials, Preprint, MSRI Berkeley, 1986, published as Bodelón, Devaney, Hayes, Roberts, Goldberg and Hubbard, 1999, 2000.
- Robert L. Devaney, Xavier Jarque, and Mónica Moreno Rocha, Indecomposable continua and Misiurewicz points in exponential dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 10, 3281–3293. MR 2192642, DOI 10.1142/S0218127405013885
- Adrien Douady and John Hubbard, Etude dynamique des polynômes complexes, Prépublications mathémathiques d’Orsay (1984 / 1985), no. 2/4.
- A. È. Erëmenko and M. Yu. Lyubich, Iterations of entire functions, Dokl. Akad. Nauk SSSR 279 (1984), no. 1, 25–27 (Russian). MR 769199
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102
- Leonhardt Euler, De formulis exponentialibus replicatis, Acta Acad. Petropolitanae 1 (1777), 38–60.
- Markus Förster, Parameter rays for the exponential family, Diplomarbeit, Techn. Univ. München, 2003, Available as Thesis 2003-03 on the Stony Brook Thesis Server.
- Markus Förster and Dierk Schleicher, Parameter rays for the exponential family, Preprint, 2005, to appear in Ergodic Theory Dynam. Systems.
- John H. Hubbard, Dierk Schleicher, and Mitsuhiro Shishikura, A topological characterization of postsingularly finite exponential maps and limits of quadratic differentials, Manuscript, 2004, submitted for publication.
- Boguslawa Karpińska, Hausdorff dimension of the hairs without endpoints for $\lambda \exp z$, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 11, 1039–1044 (English, with English and French summaries). MR 1696203, DOI 10.1016/S0764-4442(99)80321-8
- Bastian Laubner, Dierk Schleicher, and Vlad Vicol, A combinatorial classification of postsingularly periodic complex exponential maps, Preprint, 2006, arXiv:math.DS/ 0602602, conditionally accepted for publication in Discrete Contin. Dynam. Syst.
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- Weiyuan Qiu, Hausdorff dimension of the $M$-set of $\lambda \exp (z)$, Acta Math. Sinica (N.S.) 10 (1994), no. 4, 362–368. A Chinese summary appears in Acta Math. Sinica 38 (1995), no. 5, 719. MR 1416147, DOI 10.1007/BF02582032
- Lasse Rempe, Dynamics of exponential maps, doctoral thesis, Christian-Albrechts-Universität Kiel, 2003, http://e-diss.uni-kiel.de/diss_781/.
- Lasse Rempe, A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2639–2648. MR 2213743, DOI 10.1090/S0002-9939-06-08287-6
- Lasse Rempe, Topological dynamics of exponential maps on their escaping sets, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1939–1975. MR 2279273, DOI 10.1017/S0143385706000435
- Lasse Rempe, On nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 353–369. MR 2337482
- Lasse Rempe and Dierk Schleicher, Bifurcations in the space of exponential maps, Preprint #2004/03, Institute for Mathematical Sciences, SUNY Stony Brook, 2004, arXiv:math.DS/0311480, submitted for publication.
- —, Combinatorics of bifurcations in exponential parameter space, Transcendental Dynamics and Complex Analysis (P. Rippon and G. Stallard, eds.), London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 2007, pp. 317–370, arXiv:math.DS/0408011.
- Dierk Schleicher, On the dynamics of iterated exponential maps, Habilitation thesis, TU München, 1999.
- Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
- Dierk Schleicher and Johannes Zimmer, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 327–354. MR 1996442
Bibliographic Information
- Markus Förster
- Affiliation: KPMG Deutsche Treuhand-Gesellschaft, Marie-Curie-Straße 30, 60439 Frankfurt/ Main, Germany
- Email: mfoerster@kpmg.com
- Lasse Rempe
- Affiliation: Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom
- MR Author ID: 738017
- ORCID: 0000-0001-8032-8580
- Email: l.rempe@liverpool.ac.uk
- Dierk Schleicher
- Affiliation: International University Bremen, P.O. Box 750 561, 28725 Bremen, Germany
- MR Author ID: 359328
- Email: dierk@iu-bremen.de
- Received by editor(s): September 1, 2005
- Received by editor(s) in revised form: January 16, 2007
- Published electronically: November 1, 2007
- Additional Notes: The first author was supported in part by a European fellowship of the Marie Curie Fellowship Association.
The second author was supported in part by a postdoctoral fellowship of the German Academic Exchange Service (DAAD) and by the German-Israeli Foundation for Scientific Research and Development (G.I.F.), grant no. G-643-117.6/1999 - Communicated by: Juha M. Heinonen
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 651-663
- MSC (2000): Primary 37F10; Secondary 30D05
- DOI: https://doi.org/10.1090/S0002-9939-07-09073-9
- MathSciNet review: 2358507