Amenable actions and almost invariant sets
HTML articles powered by AMS MathViewer
- by Alexander S. Kechris and Todor Tsankov
- Proc. Amer. Math. Soc. 136 (2008), 687-697
- DOI: https://doi.org/10.1090/S0002-9939-07-09116-2
- Published electronically: November 3, 2007
- PDF | Request permission
Abstract:
In this paper, we study the connections between properties of the action of a countable group $\Gamma$ on a countable set $X$ and the ergodic theoretic properties of the corresponding generalized Bernoulli shift, i.e., the corresponding shift action of $\Gamma$ on $M^X$, where $M$ is a measure space. In particular, we show that the action of $\Gamma$ on $X$ is amenable iff the shift $\Gamma \curvearrowright M^X$ has almost invariant sets.References
- Erik Bédos and Pierre de la Harpe, Moyennabilité intérieure des groupes: définitions et exemples, Enseign. Math. (2) 32 (1986), no. 1-2, 139–157 (French). MR 850556
- Bekka, Bachir, de la Harpe, Pierre, Valette, Alain, Kazhdan’s property (T), unpublished, http://www.mmas.univ-metz.fr/~bekka/.
- Eric K. van Douwen, Measures invariant under actions of $F_2$, Topology Appl. 34 (1990), no. 1, 53–68. MR 1035460, DOI 10.1016/0166-8641(90)90089-K
- Richard Durrett, Probability: theory and examples, 2nd ed., Duxbury Press, Belmont, CA, 1996. MR 1609153
- Glasner, Yair, Monod, Nicolas, Amenable actions, free products and a fixed point property, preprint, arXiv:math.GR/0505197.
- R. Grigorchuk and V. Nekrashevych, Amenable actions of nonamenable groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 326 (2005), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 13, 85–96, 281 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 140 (2007), no. 3, 391–397. MR 2183217, DOI 10.1007/s10958-007-0448-z
- Greg Hjorth and Alexander S. Kechris, Rigidity theorems for actions of product groups and countable Borel equivalence relations, Mem. Amer. Math. Soc. 177 (2005), no. 833, viii+109. MR 2155451, DOI 10.1090/memo/0833
- Greg Hjorth, A converse to Dye’s theorem, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3083–3103. MR 2135736, DOI 10.1090/S0002-9947-04-03672-4
- Vaughan F. R. Jones and Klaus Schmidt, Asymptotically invariant sequences and approximate finiteness, Amer. J. Math. 109 (1987), no. 1, 91–114. MR 878200, DOI 10.2307/2374553
- A. S. Kechris, Unitary representations and modular actions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 326 (2005), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 13, 97–144, 281–282 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 140 (2007), no. 3, 398–425. MR 2183218, DOI 10.1007/s10958-007-0449-y
- Klaus Schmidt, Amenability, Kazhdan’s property $T$, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems 1 (1981), no. 2, 223–236. MR 661821, DOI 10.1017/s014338570000924x
- Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
Bibliographic Information
- Alexander S. Kechris
- Affiliation: Department of Mathematics 253-37, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 99660
- Email: kechris@caltech.edu
- Todor Tsankov
- Affiliation: Department of Mathematics 253-37, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 781832
- Email: todor@caltech.edu
- Received by editor(s): October 2, 2006
- Received by editor(s) in revised form: February 8, 2007
- Published electronically: November 3, 2007
- Additional Notes: This research was partially supported by NSF grant DMS-0455285
- Communicated by: Jane M. Hawkins
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 687-697
- MSC (2000): Primary 28D15; Secondary 43A07
- DOI: https://doi.org/10.1090/S0002-9939-07-09116-2
- MathSciNet review: 2358510