## The order of a group of even order

HTML articles powered by AMS MathViewer

- by Hiroyoshi Yamaki PDF
- Proc. Amer. Math. Soc.
**136**(2008), 397-402 Request permission

## Abstract:

We will give an estimation of the order of a group of even order by the order of the centralizer of an involution using the classification of finite simple groups.## References

- Michael Aschbacher and Gary M. Seitz,
*Involutions in Chevalley groups over fields of even order*, Nagoya Math. J.**63**(1976), 1β91. MR**422401** - Richard Brauer and K. A. Fowler,
*On groups of even order*, Ann. of Math. (2)**62**(1955), 565β583. MR**74414**, DOI 10.2307/1970080 - N. Burgoyne and C. Williamson,
*Centralizers of involutions in Chevalley groups of odd characteristic*, Mimeographed notes (1972). - Naoki Chigira, Nobuo Iiyori, and Hiroyoshi Yamaki,
*Non-abelian Sylow subgroups of finite groups of even order*, Invent. Math.**139**(2000), no.Β 3, 525β539. MR**1738059**, DOI 10.1007/s002229900040 - J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,
*$\Bbb {ATLAS}$ of finite groups*, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR**827219** - R. H. Dye,
*On the conjugacy classes of involutions of the simple orthogonal groups over perfect fields of characteristic two*, J. Algebra**18**(1971), 414β425. MR**276366**, DOI 10.1016/0021-8693(71)90071-8 - R. H. Dye,
*On the involution classes of the linear groups $\textrm {GL}_{n}(K)$, $\textrm {SL}_{n}(K)$, $\textrm {PGL}_{n}(K)$, $\textrm {PSL}_{n}(K)$ over fields of characteristic two*, Proc. Cambridge Philos. Soc.**72**(1972), 1β6. MR**294519**, DOI 10.1017/s030500410005088x - R. H. Dye,
*On the conjugacy classes of involutions of the unitary groups $\textrm {U}_{m}(K)$, $\textrm {SU}_{m}(K)$, $\textrm {PU}_{m}(K)$, $\textrm {PSU}_{m}(K)$, over perfect fields of characteristic $2$*, J. Algebra**24**(1973), 453β459. MR**308287**, DOI 10.1016/0021-8693(73)90118-X - K. Harada and M. Miyamoto,
*On the order of a group of even order*, To appear in J. Algebra. - Bertram Huppert and Norman Blackburn,
*Finite groups. II*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242, Springer-Verlag, Berlin-New York, 1982. AMD, 44. MR**650245** - Nobuo Iiyori and Hiroyoshi Yamaki,
*Prime graph components of the simple groups of Lie type over the field of even characteristic*, J. Algebra**155**(1993), no.Β 2, 335β343. MR**1212233**, DOI 10.1006/jabr.1993.1048 - A. S. Kondratβ²ev,
*On prime graph components of finite simple groups*, Mat. Sb.**180**(1989), no.Β 6, 787β797, 864 (Russian); English transl., Math. USSR-Sb.**67**(1990), no.Β 1, 235β247. MR**1015040** - Michio Suzuki,
*Group theory. II*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986. Translated from the Japanese. MR**815926**, DOI 10.1007/978-3-642-86885-6 - J. S. Williams,
*Prime graph components of finite groups*, J. Algebra**69**(1981), no.Β 2, 487β513. MR**617092**, DOI 10.1016/0021-8693(81)90218-0

## Additional Information

**Hiroyoshi Yamaki**- Affiliation: Department of Mathematics, Kumamoto University, Kumamoto 860-8555 Japan
- Address at time of publication: JICA, Maipu 1300, Piso 21, C1006ACT Buenos Aires, Argentina
- Email: yamaki@gpo.kumamoto-u.ac.jp, yamaki.hiroyoshi@gmail.com
- Received by editor(s): August 15, 2006
- Published electronically: October 25, 2007
- Additional Notes: The author was supported in part by Grant-in-Aid for Scientific Research (No. 16540030), Japan Society for the Promotion of Science
- Communicated by: Jonathan I. Hall
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**136**(2008), 397-402 - MSC (2000): Primary 20D05, 20D06
- DOI: https://doi.org/10.1090/S0002-9939-07-09118-6
- MathSciNet review: 2358476