## Matlis duals of top Local cohomology modules

HTML articles powered by AMS MathViewer

- by Michael Hellus and Jürgen Stückrad PDF
- Proc. Amer. Math. Soc.
**136**(2008), 489-498 Request permission

## Abstract:

In the first section of this paper we present generalizations of known results on the set of associated primes of Matlis duals of local cohomology modules; we prove these generalizations by using a new technique. In section 2 we compute the set of associated primes of the Matlis dual of $\operatorname {H}^{d-1}_J(R)$, where $R$ is a $d$-dimensional local ring and $J\subseteq R$ an ideal such that $\dim (R/J)=1$ and $\operatorname {H}^d_J(R)=0$.## References

- Hyman Bass,
*On the ubiquity of Gorenstein rings*, Math. Z.**82**(1963), 8–28. MR**153708**, DOI 10.1007/BF01112819 - M. Brodmann and M. Hellus,
*Cohomological patterns of coherent sheaves over projective schemes*, J. Pure Appl. Algebra**172**(2002), no. 2-3, 165–182. MR**1906872**, DOI 10.1016/S0022-4049(01)00144-X - Markus Brodmann and Craig Huneke,
*A quick proof of the Hartshorne-Lichtenbaum vanishing theorem*, Algebraic geometry and its applications (West Lafayette, IN, 1990) Springer, New York, 1994, pp. 305–308. MR**1272037** - M. P. Brodmann and R. Y. Sharp,
*Local cohomology: an algebraic introduction with geometric applications*, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR**1613627**, DOI 10.1017/CBO9780511629204 - Winfried Bruns and Jürgen Herzog,
*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956** - Gabriel Chiriacescu,
*Cofiniteness of local cohomology modules over regular local rings*, Bull. London Math. Soc.**32**(2000), no. 1, 1–7. MR**1718769**, DOI 10.1112/S0024609399006499 - David Eisenbud,
*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960**, DOI 10.1007/978-1-4612-5350-1 - Robin Hartshorne,
*Local cohomology*, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR**0224620** - Hellus, M. Matlis duals of top local cohomology modules and the arithmetic rank of an ideal,
*Comm. Algebra***35**, no. 4 (2007), 1421–1432. - M. Hellus,
*On the set of associated primes of a local cohomology module*, J. Algebra**237**(2001), no. 1, 406–419. MR**1813886**, DOI 10.1006/jabr.2000.8580 - M. Hellus,
*On the associated primes of Matlis duals of top local cohomology modules*, Comm. Algebra**33**(2005), no. 11, 3997–4009. MR**2183976**, DOI 10.1080/00927870500261314 - Craig Huneke,
*Problems on local cohomology*, Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990) Res. Notes Math., vol. 2, Jones and Bartlett, Boston, MA, 1992, pp. 93–108. MR**1165320** - C. Huneke and G. Lyubeznik,
*On the vanishing of local cohomology modules*, Invent. Math.**102**(1990), no. 1, 73–93. MR**1069240**, DOI 10.1007/BF01233420 - Eben Matlis,
*Injective modules over Noetherian rings*, Pacific J. Math.**8**(1958), 511–528. MR**99360** - Hideyuki Matsumura,
*Commutative ring theory*, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR**879273** - Günter Scheja and Uwe Storch,
*Regular sequences and resultants*, Research Notes in Mathematics, vol. 8, A K Peters, Ltd., Natick, MA, 2001. MR**1831871**

## Additional Information

**Michael Hellus**- Affiliation: Department of Mathematics, University of Leipzig, D-04109 Leipzig, Germany
- MR Author ID: 674206
- Email: michael.hellus@math.uni-leipzig.de
**Jürgen Stückrad**- Affiliation: Department of Mathematics, University of Leipzig, D-04109 Leipzig, Germany
- Email: juergen.stueckrad@math.uni-leipzig.de
- Received by editor(s): April 5, 2006
- Received by editor(s) in revised form: January 19, 2007
- Published electronically: November 1, 2007
- Communicated by: Bernd Ulrich
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**136**(2008), 489-498 - MSC (2000): Primary 13D45, 13C05
- DOI: https://doi.org/10.1090/S0002-9939-07-09157-5
- MathSciNet review: 2358488