UNIQUENESS OF THE KONTSEVICH-VISHIK TRACE

L. MANICCIA, E. SCHROHE, AND J. SEILER

(Communicated by Mikhail Shubin)

Dedicated to Boris V. Fedosov on the occasion of his 70th birthday

Abstract. Let M be a closed manifold. We show that the Kontsevich-Vishik trace, which is defined on the set of all classical pseudodifferential operators on M, whose (complex) order is not an integer greater than or equal to $-\dim M$, is the unique functional which (i) is linear on its domain, (ii) has the trace property and (iii) coincides with the L^2-operator trace on trace class operators.

Also the extension to even-even pseudodifferential operators of arbitrary integer order on odd-dimensional manifolds and to even-odd pseudodifferential operators of arbitrary integer order on even-dimensional manifolds is unique.

1. Introduction

We denote by M a compact n-dimensional manifold without boundary. A classical pseudodifferential operator $(\psi do) A$ acting on sections of a vector bundle over M is said to have order $\mu \in \mathbb{C}$ if it belongs to the Hörmander class $S^{\Re \mu}_{1,0}(M)$ and the local symbols $a = a(x, \xi)$ of A have asymptotic expansions

$$a \sim \sum_{j=0}^{\infty} a_{\mu-j},$$

where the $a_{\mu-j}$ are positively homogeneous of degree $\mu - j$ for large ξ. We shall write $\text{ord} A = \mu$ to express that the order of A is μ.

In two remarkable papers, Kontsevich and Vishik in 1994 and 1995 analyzed the properties of determinants of elliptic ψdo's, [7], [8]. One important tool was the construction of a trace-like mapping TR defined on the set of all classical ψdo's whose order is not an element of $\mathbb{Z}_{\geq -n}$, the set of integers greater than or equal to $-n$; see also the Remarks, below.

We shall denote this domain by D. As the sum of two operators of orders μ and μ' in D is an element of D only if $\mu - \mu'$ is an integer, D is not a vector space. Thus it does not make sense to speak about linear functionals on D. The map $\text{TR} : D \to \mathbb{C}$, however, is as linear as it can be expected to be:

$$\text{TR}(cA + dB) = c\text{TR}(A) + d\text{TR}(B) \quad \text{for } c, d \in \mathbb{C}, A, B, cA + dB \in D.$$
Moreover, TR behaves like a trace:

\[\text{TR}(AB) = \text{TR}(BA), \quad \text{whenever} \ AB, BA \in D. \]

Finally, the Kontsevich-Vishik trace (sometimes also canonical trace) TR coincides with the \(L^2 \)-operator trace \(\text{Tr} \) on trace class \(\psi \)do’s:

\[\text{TR}(A) = \text{Tr}(A) \quad \text{if Re \ ord}(A) < -n. \]

It is clear that the Kontsevich-Vishik trace cannot be extended to a trace on the algebra of all \(\psi \)do’s on \(M \): The only trace there (up to multiples) is the Wodzicki residue \[13\], which is known to vanish on trace class operators. There is also a simple direct way to see this: We know – e.g. from the Atiyah-Singer index theorem – that there exists an elliptic pseudodifferential operator \(P \) on \(M \) with nonzero index. Using order reducing operators, we may assume the order of \(P \) to be zero. Let \(Q \) be a parametrix to \(P \) modulo smoothing operators. Then

\[\text{Index} \ P = \text{Tr}(1 - PQ) - \text{Tr}(1 - QP). \]

If we could extend TR to a trace on all pseudodifferential operators, the right hand side could be rewritten as the trace of the commutator \([P,Q]\) and therefore would have to be zero – a contradiction.

It has been observed, however, by Kontsevich-Vishik and Grubb \[4\] that TR extends to a slightly larger domain. Recall that the symbol \(a \) of an integer order operator \(A \) is said to be even-even if the homogeneous components satisfy

\[a_{\mu-j}(x, -\xi) = (-1)^{\mu-j} a_{\mu-j}(x, \xi). \]

It is called even-odd, if

\[a_{\mu-j}(x, -\xi) = (-1)^{\mu-j+1} a_{\mu-j}(x, \xi). \]

The Kontsevich-Vishik trace \(\text{TR}(A) \) for a \(\psi \)do \(A \) of order \(\mu \) then can also be defined if \(\mu \in \mathbb{Z}_{\geq -n} \), provided that

\[(\text{EE}) \ n \text{ is odd, and the symbol of } A \text{ is even-even, or} \]
\[(\text{EO}) \ n \text{ is even, and the symbol of } A \text{ is even-odd.} \]

For the sake of brevity we shall denote this larger domain (depending on \(n \)) by \(D^+ \).

In both cases, the component \(a_{-n} \) in the asymptotic expansion of the symbol of \(A \) is odd in \(\xi \) for large \(|\xi| \), say for \(|\xi| \geq 1 \):

\[a_{-n}(x, -\xi) = -a_{-n}(x, \xi). \]

Hence the density for the Wodzicki residue of the operator \(A \) vanishes pointwise, i.e.

\[\text{res}_x(A) = \int_{S^*_x M} \text{tr} a_{-n}(x, \xi) \, d\sigma(\xi) = 0 \quad \text{for each} \ x \in M. \]

Here, \(d\sigma \) is the surface measure on the unit sphere \(S^*_x M \) over \(x \) in the cotangent bundle and \(\text{tr} \) is the fiber trace. The Wodzicki residue of \(A \) is given by integration of \(\text{res}_x \ A \) over \(M \) and therefore also vanishes.

The trace property (1.3) extends to the case where \(A \) and \(B \) have integer order and \(AB \) and \(BA \) belong to \(D^+ \).

The Kontsevich-Vishik trace has received considerable attention and found interesting applications; see e.g. \[5, 9, 10, 11, 12\]. Moreover, it has been extended to boundary value problems in Boutet de Monvel’s calculus \[3\].
It seems, however, that it has never been noticed that the above properties make the Kontsevich-Vishik trace unique. This is what we show in this short note. The proof, which will be given in the next section, relies on ideas in [2].

Theorem. (a) Let $\tau : D \to C$ be a map with properties (1.2), (1.3), and (1.4). Then $\tau = Tr$.

(b) Also the extension of τ to D^+ is unique. In fact, τ is already unique on the space of all integer order ψdo’s which satisfy (EE) or (EO) when $\mu \geq -n$.

2. Proof

In order to establish (a), choose a $\psi do \ A$ of order $\mu \in \mathbb{C} \setminus \mathbb{Z}_{\geq -n}$ on M.

We find a covering of M by open neighborhoods and a finite subordinate partition of unity $\{\varphi_j\}$ such that for every pair (j, k), both φ_j and φ_k have support in one coordinate neighborhood. We write

$$A = \sum_{j, k} \varphi_j A \varphi_k.$$

Each operator $\varphi_j A \varphi_k$ may be considered a ψdo on \mathbb{R}^n. As the map τ has the linearity property (1.2), we may confine ourselves to the case where $A = \text{op} \ a$ with a symbol a on \mathbb{R}^n having an expansion (1.1). Moreover, we can assume that $A = \varphi A \psi$ whenever $\varphi, \psi \in C^\infty_c(\mathbb{R}^n)$ are equal to one on a sufficiently large set.

To simplify further, we write

$$A = \text{op} \ a_{\mu} + \text{op} \ a_{\mu - 1} + \ldots + \text{op} \ a_{\mu - K} + \text{op} \ r,$$

where $a_{\mu - j}$ is a symbol on \mathbb{R}^n, homogeneous in ξ of degree $\mu - j$ for $|\xi| \geq 1$, and K is so large that $r \in S_{1, 0}^{n-1}$. For $\varphi, \psi \in C^\infty_c(\mathbb{R}^n)$ as above we then have

$$\tau(\text{op} \ a) = \tau(\varphi \text{op} \ (a) \psi) = \sum_{j=0}^{K} \tau(\varphi \text{op} \ (a_{\mu - j}) \psi) + \tau(\varphi \text{op} \ (r) \psi).$$

Since $\tau(\varphi \text{op} \ (r) \psi) = \text{tr}(\varphi \text{op} \ (r) \psi)$ by (1.4), we will know $\tau(\text{op} \ a)$ as soon as we know $\tau(\varphi \text{op} \ (a_{\mu - j}) \psi)$ for $j = 0, \ldots, K$.

We may assume that μ is not an integer, since the operator trace determines τ on all operators of order $\mu < -n$. Now we let, similar to the proof of [2, Lemma 1.3(i)],

$$b_{\mu - j}(x, \xi) = \frac{1}{n + \mu - j} \sum_{k=1}^{n} \partial_{\xi_k} (\xi_k a_{\mu - j}(x, \xi)).$$

Euler’s relation for homogenous functions implies that, for $|\xi| \geq 1$,

$$b_{\mu - j} = \frac{1}{n + \mu - j} (n a_{\mu - j} + (\mu - j) a_{\mu - j}) = a_{\mu - j}.$$

Hence we can write

$$\tau(\varphi \text{op} \ (a_{\mu - j}) \psi) = \tau(\varphi \text{op} \ (a_{\mu - j} - b_{\mu - j}) \psi) + \tau(\varphi \text{op} \ (b_{\mu - j}) \psi).$$

Since $a_{\mu - j} - b_{\mu - j}$ is regularizing, the first term on the right hand side is determined by property (1.4). Now we additionally choose $\chi \in C^\infty_c(\mathbb{R}^n)$ with $\chi \varphi = \varphi$ and
\(\chi \psi = \psi \). The fact that \(\text{op}(\partial_{\xi_k} p) = -i \ [x_k, \text{op} p] \) for an arbitrary symbol \(p \) implies that

\[
\varphi \text{op}(b_{\mu-j})\psi = -i \sum_{k=1}^{n} [\chi x_k, \varphi \text{op}(\xi_k b_{\mu-j})\psi].
\]

Assuming that \(\tau \) has property (1.3), it vanishes on the last term in (2.9) which is a sum of commutators. Hence the proof of (a) is complete.

Next let us show (b). With the same considerations as before we may assume that \(A = \text{op} a \) is a pseudodifferential operator on \(\mathbb{R}^n \) with a representation as in (2.7), where now \(\mu \) is an integer \(\geq -n \) and the \(a_{\mu-j} \) have property (EE) or (EO). We only have to show that \(\tau(\varphi \text{op}(a_{\mu-j})\psi) \) is uniquely determined, \(j = 0, \ldots, \mu + n \). For \(\mu - j \neq -n \) the argument is as before, using the symbols in (2.8) and noting that \(a_{\mu-j}(x, \xi)\xi_k \) is even-even or even-odd whenever this is the case for \(a_{\mu-j} \).

So let us consider \(a_{-n} \). Now we apply the technique used in the proof of [2, Lemma 1.3(ii)]. The assumption that \(n \) is odd and \(a_{-n} \) even-even or \(n \) is even and \(a_{-n} \) even-odd implies that \(a_{-n} \) is odd in \(\xi \):

\[
a_{-n}(x, -\xi) = -a_{-n}(x, \xi) \quad \text{for } |\xi| \geq 1.
\]

Hence, for each fixed \(x \), the integral over the unit sphere \(S = \{|\xi| = 1\} \) vanishes:

\[(2.10) \quad \int_{S} a_{-n}(x, \xi) \, d\sigma(\xi) = 0.\]

The Laplace operator \(\Delta = \sum_{k=1}^{n} \partial^2 / \partial \xi_k^2 \) in polar coordinates takes the form

\[
\Delta = \frac{1}{r^{n-1}} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \Delta_S,
\]

where \(r = |\xi| \) is the radial variable and \(\Delta_S \) is the Laplace-Beltrami operator on \(S \).

Equation (2.10) implies that, for each \(x \), the function \(a_{-n}(x, \cdot)|_S \) is orthogonal to the constants which form the kernel of the symmetric operator \(\Delta_S \). Hence there is a unique function \(q(x, \cdot) \in C^\infty(S) \), orthogonal to the constants, such that \(\Delta_S q(x, \cdot) = a_{-n}(x, \cdot)|_S \). As \(\Delta_S \) commutes with the antipodal map \(\eta \mapsto -\eta \), we have \(\Delta_S(q(x, -\eta) = a_{-n}(x, -\eta)|_S = -a_{-n}(x, \cdot)|_S \). Hence \(q(x, \cdot) + q(x, -\cdot) \) belongs to the kernel of \(\Delta_S \), and thus is constant. On the other hand, both \(q(x, \cdot) \) and \(q(x, -\cdot) \) are orthogonal to the constants. Therefore \(q(x, \cdot) + q(x, -\cdot) \) is zero, i.e., \(q(x, \cdot) \) is an odd function on \(S \).

Now we choose a smooth function \(\omega \) on \(\mathbb{R} \) which vanishes for small \(r \) and is equal to 1 for \(r \geq 1/2 \). We let

\[
b_{-n} = \omega(r)r^{2-n}q = \omega(|\xi|)|\xi|^{2-n}q(x, \xi/|\xi|).
\]

This is a smooth function on \(\mathbb{R}^n \) which is homogeneous of degree \(2 - n \) in \(\xi \) for \(|\xi| \geq 1 \). As \(a_{-n}(x, \xi) \) vanishes for \(x \) outside a compact set, so does \(b_{-n}(x, \xi) \). In particular, \(b_{-n} \) is an element of \(S^2_{1,0} \mathbb{R}^n \times \mathbb{R}^n \). Moreover, we have for \(|\xi| \geq 1 \)

\[
\Delta b_{-n} = \Delta(r^{2-n}q(x, \cdot)) = r^{-n}a_{-n}(x, \cdot)|_S = a_{-n}.
\]

We write \(a_{-n} = (a_{-n} - \Delta b_{-n}) + \Delta b_{-n} \). The symbol \(a_{-n} - \Delta b_{-n} \) is regularizing and thus \(\tau(\varphi \text{op}(a_{-n} - \Delta b_{-n})\psi) \) is determined by (1.4). The operator associated with \(\text{op}(\varphi(\Delta b_{-n})\psi) \) on the other hand is a sum of commutators:

\[(2.11) \quad \varphi \text{op}(\Delta b_{-n})\psi = -i \sum_{k=1}^{n} [\chi x_k, \varphi \text{op}(\partial_{\xi_k} b_{-n})\psi],\]
where χ is chosen as in the proof of (a). Hence τ vanishes on $\varphi \circ \Delta b_{-n} \psi$. This concludes the argument.

Remarks. (a) One way of defining TR is as follows [7], [4]: Choose an invertible positive ψdo P of order $m > 0$ with scalar principal symbol and define the complex powers $P^z, z \in \mathbb{C}$. The generalized 'zeta function' $\zeta(A, P, z) = \text{Tr}(AP^{-z})$ is holomorphic on $\{\text{Re } z > (n + \mu)/m\}, \mu = \text{ord } A$, and extends meromorphically to \mathbb{C} with at most simple poles in the points $z_j = (n + \mu - j)/m$. If $\mu \notin \mathbb{Z}_{\leq -n}$ or if A satisfies (EE) or (EO), then there is no pole in $z = 0$, and $\text{TR}(A) := \zeta(A; P, 0)$ is independent of P.

One can also define TR for $\mu \notin \mathbb{Z}_{\leq -n}$ by regularizing the integral $\int k(x, x) \, dx$ over the local distributional kernel of A, thus generalizing Lidskij’s formula for trace class operators. In this spirit (and with a more general framework) Connes and Moscovici prove another uniqueness result, [1, Lemma I.5]: TR is the unique holomorphic extension of the classical Lidskij formula through holomorphic families of ψdo’s of noninteger order.

(b) For noninteger μ, the uniqueness of the Kontsevich-Vishik trace can also be derived from a result by Lesch, [9, Proposition 4.7], which implies that a ψdo A of order $\mu \notin \mathbb{Z}$ can be written in the form $A = \sum [P_j, Q_j] + R$ with finitely many ψdo’s P_j, Q_j, and R of orders 1, μ, and $-\infty$, respectively. His proof relies on a construction by Guillemin [6, Theorem 6.2] which makes the argument less elementary than the one given here.

References
