Projective normality of ruled surfaces
HTML articles powered by AMS MathViewer
- by Euisung Park
- Proc. Amer. Math. Soc. 136 (2008), 839-847
- DOI: https://doi.org/10.1090/S0002-9939-07-09121-6
- Published electronically: November 30, 2007
- PDF | Request permission
Abstract:
In this article we study normal generation of irrational ruled surfaces. When $C$ is a smooth curve of genus $g$, Green and Lazarsfeld proved that a very ample line bundle $L \in \mbox {Pic}X$ with $\mbox {deg}(L) \geq 2g+1-2h^1 (X,L) - \mbox {Cliff}(X)$ is normally generated where $\mbox {Cliff}(C)$ denotes the Clifford index of the curve $C$ (Green and Lazarsfeld, 1986). We generalize this to line bundles on a ruled surface over $C$.References
- David C. Butler, Normal generation of vector bundles over a curve, J. Differential Geom. 39 (1994), no. 1, 1–34. MR 1258911
- David C. Butler, Global sections and tensor products of line bundles over a curve, Math. Z. 231 (1999), no. 3, 397–407. MR 1704986, DOI 10.1007/PL00004739
- G. Castelnuovo, Sui multipli di une serie lineare di gruppi di punti appartenente ad une curva algebraic, Rend. Circ. Mat. Palermo (2) 7 (1893), 89-110.
- Luis Fuentes-García and Manuel Pedreira, The projective theory of ruled surfaces, Note Mat. 24 (2005), no. 1, 25–63. MR 2199622
- Luis Fuentes García and Manuel Pedreira, Canonical geometrically ruled surfaces, Math. Nachr. 278 (2005), no. 3, 240–257. MR 2110530, DOI 10.1002/mana.200310238
- Francisco Javier Gallego and B. P. Purnaprajna, Normal presentation on elliptic ruled surfaces, J. Algebra 186 (1996), no. 2, 597–625. MR 1423277, DOI 10.1006/jabr.1996.0388
- Francisco Javier Gallego and B. P. Purnaprajna, Some results on rational surfaces and Fano varieties, J. Reine Angew. Math. 538 (2001), 25–55. MR 1855753, DOI 10.1515/crll.2001.068
- Mark Green and Robert Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), no. 1, 73–90. MR 813583, DOI 10.1007/BF01388754
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Yuko Homma, Projective normality and the defining equations of ample invertible sheaves on elliptic ruled surfaces with $e\geq 0$, Natur. Sci. Rep. Ochanomizu Univ. 31 (1980), no. 2, 61–73. MR 610593
- Yuko Homma, Projective normality and the defining equations of an elliptic ruled surface with negative invariant, Natur. Sci. Rep. Ochanomizu Univ. 33 (1982), no. 1-2, 17–26. MR 703959
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285, DOI 10.1515/9781400882069
- Euisung Park, On higher syzygies of ruled surfaces, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3733–3749. MR 2218997, DOI 10.1090/S0002-9947-05-03875-4
- Euisung Park, On higher syzygies of ruled surfaces. II, J. Algebra 294 (2005), no. 2, 590–608. MR 2183366, DOI 10.1016/j.jalgebra.2005.05.022
Bibliographic Information
- Euisung Park
- Affiliation: Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea
- Email: euisungpark@korea.ac.kr
- Received by editor(s): July 15, 2005
- Received by editor(s) in revised form: February 19, 2007
- Published electronically: November 30, 2007
- Communicated by: Michael Stillman
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 839-847
- MSC (2000): Primary 14J26
- DOI: https://doi.org/10.1090/S0002-9939-07-09121-6
- MathSciNet review: 2361855