Codes over rings of size four, Hermitian lattices, and corresponding theta functions
HTML articles powered by AMS MathViewer
- by T. Shaska and G. S. Wijesiri
- Proc. Amer. Math. Soc. 136 (2008), 849-857
- DOI: https://doi.org/10.1090/S0002-9939-07-09152-6
- Published electronically: December 3, 2007
- PDF | Request permission
Abstract:
Let $K=Q(\sqrt {-\ell })$ be an imaginary quadratic field with ring of integers $\mathcal {O}_K$, where $\ell$ is a square free integer such that $\ell \equiv 3 \mod 4$, and let $C=[n, k]$ is a linear code defined over $\mathcal {O}_K/2\mathcal {O}_K$. The level $\ell$ theta function $\Theta _{\Lambda _{\ell } (C) }$ of $C$ is defined on the lattice $\Lambda _{\ell } (C):= \{ x \in \mathcal {O}_K^n : \rho _\ell (x) \in C\}$, where $\rho _{\ell }:\mathcal {O}_K \rightarrow \mathcal {O}_K/2\mathcal {O}_K$ is the natural projection. In this paper, we prove that: i) for any $\ell , \ell ^\prime$ such that $\ell \leq \ell ^\prime$, $\Theta _{\Lambda _\ell }(q)$ and $\Theta _{\Lambda _{\ell ^\prime }}(q)$ have the same coefficients up to $q^{\frac {\ell +1}{4}}$, ii) for $\ell \geq \frac {2(n+1)(n+2)}{n} -1$, $\Theta _{\Lambda _{\ell }} (C)$ determines the code $C$ uniquely, iii) for $\ell < \frac {2(n+1)(n+2)}{n} -1$, there is a positive dimensional family of symmetrized weight enumerator polynomials corresponding to $\Theta _{\Lambda _\ell }(C)$.References
- Kok Seng Chua, Codes over $\rm GF(4)$ and $\mathbf F_2\times \mathbf F_2$ and Hermitian lattices over imaginary quadratic fields, Proc. Amer. Math. Soc. 133 (2005), no. 3, 661–670. MR 2113912, DOI 10.1090/S0002-9939-04-07724-X
- N. J. A. Sloane, Codes over $\textrm {GF}(4)$ and complex lattices, J. Algebra 52 (1978), no. 1, 168–181. MR 490436, DOI 10.1016/0021-8693(78)90266-1
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1993. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1194619, DOI 10.1007/978-1-4757-2249-9
- Heng Huat Chan, Kok Seng Chua, and Patrick Solé, Seven-modular lattices and a septic base Jacobi identity, J. Number Theory 99 (2003), no. 2, 361–372. MR 1968458, DOI 10.1016/S0022-314X(02)00069-0
Bibliographic Information
- T. Shaska
- Affiliation: Department of Mathematics and Statistics, Oakland University, 368 Science and Engineering Building, Rochester, Michigan 48309.
- MR Author ID: 678224
- ORCID: 0000-0002-2293-8230
- Email: shaska@oakland.edu
- G. S. Wijesiri
- Affiliation: Department of Mathematics and Statistics, Oakland University, 368 Science and Engineering Building, Rochester, Michigan 48309
- Email: gwijesi@oakland.edu
- Received by editor(s): January 10, 2007
- Received by editor(s) in revised form: February 14, 2007, February 21, 2007, and February 24, 2007
- Published electronically: December 3, 2007
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 849-857
- MSC (2000): Primary 11H71, 94B75; Secondary 11H31
- DOI: https://doi.org/10.1090/S0002-9939-07-09152-6
- MathSciNet review: 2361856