Characterizing algebraic stacks
HTML articles powered by AMS MathViewer
- by Sharon Hollander
- Proc. Amer. Math. Soc. 136 (2008), 1465-1476
- DOI: https://doi.org/10.1090/S0002-9939-07-08832-6
- Published electronically: December 6, 2007
- PDF | Request permission
Abstract:
We extend the notion of algebraic stack to an arbitrary subcanonical site $\mathcal C$. If the topology on $\mathcal C$ is local on the target and satisfies descent for morphisms, we show that algebraic stacks are precisely those which are weakly equivalent to representable presheaves of groupoids whose domain map is a cover. This leads naturally to a definition of algebraic $n$-stacks. We also compare different sites naturally associated to a stack.References
- Jean-Luc Brylinski, Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, vol. 107, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1197353, DOI 10.1007/978-0-8176-4731-5
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240
- Daniel Dugger, Sharon Hollander, and Daniel C. Isaksen, Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 1, 9–51. MR 2034012, DOI 10.1017/S0305004103007175
- Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 0354651
- Paul G. Goerss, (Pre-)sheaves of ring spectra over the moduli stack of formal group laws, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 101–131. MR 2061853, DOI 10.1007/978-94-007-0948-5_{4}
- Jean Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971 (French). MR 0344253
- S. Hollander, A Homotopy Theory for Stacks, math.AT/0110247
- S. Hollander, Descent for quasi-coherent sheaves on stacks, preprint (2006).
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927
- Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic, Universitext, Springer-Verlag, New York, 1994. A first introduction to topos theory; Corrected reprint of the 1992 edition. MR 1300636
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- E. Pribble, Algebraic Stacks for Stable Homotopy Theory and the Algebraic Chromatic Convergence Theorem, Northwestern University Thesis, 2004.
- Günter Tamme, Introduction to étale cohomology, Universitext, Springer-Verlag, Berlin, 1994. Translated from the German by Manfred Kolster. MR 1317816, DOI 10.1007/978-3-642-78421-7
Bibliographic Information
- Sharon Hollander
- Affiliation: Department of Mathematics, Hebrew University, Jerusalem, Israel
- Address at time of publication: Centro de Análise Mathematica, Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, Tech. Univ. Lisbon, Portugal
- Email: sjh@math.huji.ac.il, sjh@math.ist.utl.pt
- Received by editor(s): May 30, 2006
- Received by editor(s) in revised form: June 29, 2006
- Published electronically: December 6, 2007
- Communicated by: Paul Goerss
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1465-1476
- MSC (2000): Primary 55U10; Secondary 18G55, 14A20
- DOI: https://doi.org/10.1090/S0002-9939-07-08832-6
- MathSciNet review: 2367121