The sharp weighted bound for the Riesz transforms
HTML articles powered by AMS MathViewer
- by Stefanie Petermichl
- Proc. Amer. Math. Soc. 136 (2008), 1237-1249
- DOI: https://doi.org/10.1090/S0002-9939-07-08934-4
- Published electronically: December 7, 2007
- PDF | Request permission
Abstract:
We establish the best possible bound on the norm of the Riesz transforms as operators in the weighted space $L^p_{\mathbb {R}^n}(\omega )$ for $1 < p<\infty$ in terms of the classical $A_p$ characteristic of the weight.References
- Kari Astala, Tadeusz Iwaniec, and Eero Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), no. 1, 27–56. MR 1815249, DOI 10.1215/S0012-7094-01-10713-8
- Stephen M. Buckley, Summation conditions on weights, Michigan Math. J. 40 (1993), no. 1, 153–170. MR 1214060, DOI 10.1307/mmj/1029004679
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Oliver Dragičević, Loukas Grafakos, María Cristina Pereyra, and Stefanie Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), no. 1, 73–91. MR 2140200, DOI 10.5565/PUBLMAT_{4}9105_{0}3
- R. A. Fefferman, C. E. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2) 134 (1991), no. 1, 65–124. MR 1114608, DOI 10.2307/2944333
- S. Hucovic, S. Treil, A. Volberg, The Bellman functions and the sharp square estimates for square functions, Operator Theory: Advances and Applications, the volume in memory of S. A. Vinogradov, v. 113, Birkhauser Verlag, 2000.
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- A. Lerner, On some weighted norm inequalities for Littlewood-Paley operators, preprint 2006.
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909–928. MR 1685781, DOI 10.1090/S0894-0347-99-00310-0
- Stefanie Petermichl, Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 455–460 (English, with English and French summaries). MR 1756958, DOI 10.1016/S0764-4442(00)00162-2
- S. Petermichl, The sharp bound for the Hilbert transform in weighted Lebesgue spaces in terms of the classical $A_p$ characteristic, to appear in Amer. J. Math.
- S. Petermichl, S. Treil, and A. Volberg, Why the Riesz transforms are averages of the dyadic shifts?, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), 2002, pp. 209–228. MR 1964822, DOI 10.5565/PUBLMAT_{E}sco02_{1}0
- Stefanie Petermichl and Alexander Volberg, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), no. 2, 281–305. MR 1894362, DOI 10.1215/S0012-9074-02-11223-X
- S. Petermichl and J. Wittwer, A sharp estimate for the weighted Hilbert transform via Bellman functions, Michigan Math. J. 50 (2002), no. 1, 71–87. MR 1897034, DOI 10.1307/mmj/1022636751
Bibliographic Information
- Stefanie Petermichl
- Affiliation: Institut de Mathématiques de Bordeaux, 351, cours de la Libération, F-33405 Talence Cedex, France
- MR Author ID: 662756
- Email: Stefanie.Petermichl@math.u-bordeaux1.fr
- Received by editor(s): September 19, 2006
- Published electronically: December 7, 2007
- Additional Notes: The author was supported by NSF grant #DMS 9729992
- Communicated by: Michael Lacey
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1237-1249
- MSC (2000): Primary 42-XX
- DOI: https://doi.org/10.1090/S0002-9939-07-08934-4
- MathSciNet review: 2367098