Approximation of holomorphic maps with a lower bound on the rank
HTML articles powered by AMS MathViewer
- by Dejan Kolarič
- Proc. Amer. Math. Soc. 136 (2008), 1273-1284
- DOI: https://doi.org/10.1090/S0002-9939-07-08956-3
- Published electronically: December 28, 2007
- PDF | Request permission
Abstract:
Let $K$ be a closed polydisc or ball in $\mathbb {C}^n$, and let $Y$ be a quasi-projective algebraic manifold which is Zariski locally equivalent to $\mathbb {C}^p$, or a complement of an algebraic subvariety of codimension $\ge 2$ in such a manifold. If $r$ is an integer satisfying $(n-r+1) (p-r+1)\geq 2$, then every holomorphic map from a neighborhood of $K$ to $Y$ with rank $\ge r$ at every point of $K$ can be approximated uniformly on $K$ by entire maps $\mathbb {C}^n\to Y$ with rank $\ge r$ at every point of $\mathbb {C}^n$.References
- Ralph Abraham, Transversality in manifolds of mappings, Bull. Amer. Math. Soc. 69 (1963), 470–474. MR 149495, DOI 10.1090/S0002-9904-1963-10969-6
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225, DOI 10.1007/978-3-642-57739-0
- E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by R. A. M. Hoksbergen. MR 1111477, DOI 10.1007/978-94-009-2366-9
- Jean-Pierre Demailly and Jawher El Goul, Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math. 122 (2000), no. 3, 515–546. MR 1759887
- Donald A. Eisenman, Intrinsic measures on complex manifolds and holomorphic mappings, Memoirs of the American Mathematical Society, No. 96, American Mathematical Society, Providence, R.I., 1970. MR 0259165
- Otto Forster, Plongements des variétés de Stein, Comment. Math. Helv. 45 (1970), 170–184 (French). MR 269880, DOI 10.1007/BF02567324
- Franc Forstneric, Interpolation by holomorphic automorphisms and embeddings in $\textbf {C}^n$, J. Geom. Anal. 9 (1999), no. 1, 93–117. MR 1760722, DOI 10.1007/BF02923090
- Franc Forstnerič, The Oka principle for sections of subelliptic submersions, Math. Z. 241 (2002), no. 3, 527–551. MR 1938703, DOI 10.1007/s00209-002-0429-3
- Franc Forstnerič, Noncritical holomorphic functions on Stein manifolds, Acta Math. 191 (2003), no. 2, 143–189. MR 2051397, DOI 10.1007/BF02392963
- Franc Forstnerič, Runge approximation on convex sets implies the Oka property, Ann. of Math. (2) 163 (2006), no. 2, 689–707. MR 2199229, DOI 10.4007/annals.2006.163.689
- Franc Forstnerič, Holomorphic flexibility properties of complex manifolds, Amer. J. Math. 128 (2006), no. 1, 239–270. MR 2197073
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), no. 4, 851–897. MR 1001851, DOI 10.1090/S0894-0347-1989-1001851-9
- —, Partial differential relations, Ergeb. Math. Grenzgeb. (3), 9, Springer-Verlag, Berlin, 1986.
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- S. Kaliman and F. Kutzschebauch, Criteria for the density property of complex manifolds, Invent. Math. (to appear).
- Sh. Kaliman and M. Zaĭdenberg, A tranversality theorem for holomorphic mappings and stability of Eisenman-Kobayashi measures, Trans. Amer. Math. Soc. 348 (1996), no. 2, 661–672. MR 1321580, DOI 10.1090/S0002-9947-96-01482-1
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Differential Geometry 6 (1971/72), 33–46. MR 301228
- Jean-Pierre Rosay and Walter Rudin, Holomorphic maps from $\textbf {C}^n$ to $\textbf {C}^n$, Trans. Amer. Math. Soc. 310 (1988), no. 1, 47–86. MR 929658, DOI 10.1090/S0002-9947-1988-0929658-4
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915
- Gabriel Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259–289. MR 146407, DOI 10.1007/BF02391815
- Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0348781
Bibliographic Information
- Dejan Kolarič
- Affiliation: Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Email: dejan.kolaric@fmf.uni-lj.si
- Received by editor(s): June 9, 2006
- Received by editor(s) in revised form: December 5, 2006
- Published electronically: December 28, 2007
- Additional Notes: Work on this paper was supported by ARRS, Republic of Slovenia.
- Communicated by: Mei-Chi Shaw
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1273-1284
- MSC (2000): Primary 32E30, 32H02, 32M17, 32Q28
- DOI: https://doi.org/10.1090/S0002-9939-07-08956-3
- MathSciNet review: 2367101