Area of Fatou sets of trigonometric functions
HTML articles powered by AMS MathViewer
- by Hendrik Schubert
- Proc. Amer. Math. Soc. 136 (2008), 1251-1259
- DOI: https://doi.org/10.1090/S0002-9939-07-09015-6
- Published electronically: December 18, 2007
- PDF | Request permission
Abstract:
We extend a result of McMullen to show that the area of the Fatou set of the sine function in a vertical strip of width $2\pi$ is finite. This confirms a conjecture by Milnor.References
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- P. Domínguez, Connectedness properties of Julia sets of transcendental entire functions, Complex Variables Theory Appl. 32 (1997), no. 3, 199–215. MR 1457686, DOI 10.1080/17476939708814991
- Patricia Domínguez and Guillermo Sienra, A study of the dynamics of $\lambda \sin z$, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 12, 2869–2883. MR 1956410, DOI 10.1142/S0218127402006199
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102
- P. Fatou, Sur l’itération des fonctions transcendantes Entières, Acta Math. 47 (1926), no. 4, 337–370 (French). MR 1555220, DOI 10.1007/BF02559517
- Bogusława Karpińska, On the accessible points in the Julia sets of some entire functions, Fund. Math. 180 (2003), no. 1, 89–98. MR 2064852, DOI 10.4064/fm180-1-5
- Bogusława Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of $\lambda e^z$ and $\lambda \sin z$, Fund. Math. 159 (1999), no. 3, 269–287. MR 1680622, DOI 10.4064/fm_{1}999_{1}59_{3}_{1}_{2}69_{2}87
- Curt McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), no. 1, 329–342. MR 871679, DOI 10.1090/S0002-9947-1987-0871679-3
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- G. Rottenfußer and D. Schleicher, Escaping points of the cosine family, ArXiv math.DS/0403012 (2004)
- Dierk Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox, Duke Math. J. 136 (2007), no. 2, 343–356. MR 2286634, DOI 10.1215/S0012-7094-07-13625-1
- H. Schubert, Über das Maß der Fatoumenge trigonometrischer Funktionen, Diploma thesis, Kiel University, 2003
- Norbert Steinmetz, Rational iteration, De Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235, DOI 10.1515/9783110889314
- Hans Töpfer, Über die Iteration der ganzen transzendenten Funktionen, insbesondere von $\sin z$ und $\cos z$, Math. Ann. 117 (1939), 65–84 (German). MR 1293, DOI 10.1007/BF01450008
Bibliographic Information
- Hendrik Schubert
- Affiliation: Department of Mathematics, Kiel University, 24098 Kiel, Germany
- Email: schubert@math.uni-kiel.de
- Received by editor(s): August 11, 2004
- Received by editor(s) in revised form: November 20, 2006
- Published electronically: December 18, 2007
- Communicated by: Juha M. Heinonen
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1251-1259
- MSC (2000): Primary 37F10; Secondary 30D05
- DOI: https://doi.org/10.1090/S0002-9939-07-09015-6
- MathSciNet review: 2367099