Banach function algebras with dense invertible group
HTML articles powered by AMS MathViewer
- by H. G. Dales and J. F. Feinstein PDF
- Proc. Amer. Math. Soc. 136 (2008), 1295-1304 Request permission
Abstract:
In 2003 Dawson and Feinstein asked whether or not a Banach function algebra with dense invertible group can have a proper Shilov boundary. We give an example of a uniform algebra showing that this can happen, and investigate the properties of such algebras. We make some remarks on the topological stable rank of commutative, unital Banach algebras. In particular, we prove that $\mathrm {tsr}(A) \geq \mathrm {tsr}(C(\Phi _A))$ whenever $A$ is approximately regular.References
- Herbert Alexander and John Wermer, Several complex variables and Banach algebras, 3rd ed., Graduate Texts in Mathematics, vol. 35, Springer-Verlag, New York, 1998. MR 1482798
- C. Badea, The stable rank of topological algebras and a problem of R. G. Swan, J. Funct. Anal. 160 (1998), no. 1, 42–78. MR 1658716, DOI 10.1006/jfan.1998.3334
- B. J. Cole, One point parts and the peak point conjecture, Ph.D. Thesis, Yale University, 1968.
- Gustavo Corach and Angel R. Larotonda, Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), no. 3, 289–300. MR 745359, DOI 10.1016/0022-4049(84)90093-8
- Gustavo Corach and Fernando Daniel Suárez, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), no. 4, 627–639. MR 806470
- Gustavo Corach and Fernando Daniel Suárez, Extension problems and stable rank in commutative Banach algebras, Topology Appl. 21 (1985), no. 1, 1–8. MR 808718, DOI 10.1016/0166-8641(85)90052-5
- Gustavo Corach and Fernando D. Suárez, Thin spectra and stable range conditions, J. Funct. Anal. 81 (1988), no. 2, 432–442. MR 971887, DOI 10.1016/0022-1236(88)90107-3
- H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1816726
- T. W. Dawson and J. F. Feinstein, On the denseness of the invertible group in Banach algebras, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2831–2839. MR 1974340, DOI 10.1090/S0002-9939-03-07058-8
- C. M. Falcón Rodríguez, The denseness of the group of invertible elements of a uniform algebra, Cienc. Mat. (Havana) 9 (1988), no. 2, 11–17 (Spanish, with English summary). MR 1007646
- J. F. Feinstein, Trivial Jensen measures without regularity, Studia Math. 148 (2001), no. 1, 67–74. MR 1881440, DOI 10.4064/sm148-1-6
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Gabriel Stolzenberg, A hull with no analytic structure, J. Math. Mech. 12 (1963), 103–111. MR 0143061
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
- Joseph L. Taylor, Topological invariants of the maximal ideal space of a Banach algebra, Advances in Math. 19 (1976), no. 2, 149–206. MR 410384, DOI 10.1016/0001-8708(76)90061-X
- John Wermer, On an example of Stolzenberg, Symposium on Several Complex Variables (Park City, Utah, 1970) Lecture Notes in Math., Vol. 184, Springer, Berlin, 1971, pp. 79–84. MR 0298428
- Donald R. Wilken, Approximate normality and function algebras on the interval and the circle, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 98–111. MR 0196525
- L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Functional Analysis and Applications, 5 (1972), 102–110.
Additional Information
- H. G. Dales
- Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- MR Author ID: 54205
- Email: garth@maths.leeds.ac.uk
- J. F. Feinstein
- Affiliation: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- MR Author ID: 288617
- Email: Joel.Feinstein@nottingham.ac.uk
- Received by editor(s): December 1, 2005
- Received by editor(s) in revised form: October 23, 2006, and December 20, 2006
- Published electronically: December 21, 2007
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 1295-1304
- MSC (2000): Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-07-09044-2
- MathSciNet review: 2367103