Mean value of mixed exponential sums
HTML articles powered by AMS MathViewer
- by Huaning Liu
- Proc. Amer. Math. Soc. 136 (2008), 1193-1203
- DOI: https://doi.org/10.1090/S0002-9939-07-09075-2
- Published electronically: December 18, 2007
- PDF | Request permission
Abstract:
For integers $q$, $m$, $n$, $k$ with $q,k\geq 1$, and Dirichlet character $\chi \bmod q$, we define a mixed exponential sum \[ C(m,n,k,\chi ;q):= {\sum }’_{a=1}^q\chi (a)\mathrm {e}\left (\frac {ma^k+na}{q}\right ), \] where $\displaystyle \mathrm {e}(y)=\mathrm {e}^{2\pi iy}$, and $\sum ’_{a}$ denotes the summation over all $a$ with $(a,q)=1$. The main purpose of this paper is to study the mean value of \[ \sum _{\chi \bmod q}{\sum }’_{m=1}^q\left |C(m,n,k,\chi ;q)\right |^4, \] and to give a related identity on the mean value of the general Kloosterman sum \[ K(m,n,\chi ;q):={\sum }’_{a=1}^q\chi (a)\mathrm {e}\left (\frac {ma +n\overline {a}}{q}\right ), \] where $a\overline {a} \equiv 1 \bmod q$.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- S. Chowla, On Kloosterman’s sum, Norske Vid. Selsk. Forh. (Trondheim) 40 (1967), 70–72. MR 228452
- Todd Cochrane and Zhiyong Zheng, Pure and mixed exponential sums, Acta Arith. 91 (1999), no. 3, 249–278. MR 1735676, DOI 10.4064/aa-91-3-249-278
- Todd Cochrane and Zhiyong Zheng, Exponential sums with rational function entries, Acta Arith. 95 (2000), no. 1, 67–95. MR 1787206, DOI 10.4064/aa-95-1-67-95
- Todd Cochrane and Zhiyong Zheng, Bounds for certain exponential sums, Asian J. Math. 4 (2000), no. 4, 757–773. Loo-Keng Hua: a great mathematician of the twentieth century. MR 1870657, DOI 10.4310/AJM.2000.v4.n4.a3
- Todd Cochrane and Zhiyong Zheng, Upper bounds on a two-term exponential sum, Sci. China Ser. A 44 (2001), no. 8, 1003–1015. MR 1857555, DOI 10.1007/BF02878976
- Todd Cochrane, Exponential sums modulo prime powers, Acta Arith. 101 (2002), no. 2, 131–149. MR 1880304, DOI 10.4064/aa101-2-5
- Todd Cochrane and Christopher Pinner, An improved Mordell type bound for exponential sums, Proc. Amer. Math. Soc. 133 (2005), no. 2, 313–320. MR 2093050, DOI 10.1090/S0002-9939-04-07726-3
- Todd Cochrane, Jeremy Coffelt, and Christopher Pinner, A further refinement of Mordell’s bound on exponential sums, Acta Arith. 116 (2005), no. 1, 35–41. MR 2114903, DOI 10.4064/aa116-1-4
- Todd Cochrane and Christopher Pinner, Using Stepanov’s method for exponential sums involving rational functions, J. Number Theory 116 (2006), no. 2, 270–292. MR 2195926, DOI 10.1016/j.jnt.2005.04.001
- A. V. Malyšev, A generalization of Kloosterman sums and their estimates, Vestnik Leningrad. Univ. 15 (1960), no. 13, 59–75 (Russian, with English summary). MR 0125084
- André Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207. MR 27006, DOI 10.1073/pnas.34.5.204
- Zhang Wenpeng, On the general Kloosterman sum and its fourth power mean, J. Number Theory 104 (2004), no. 1, 156–161. MR 2021631, DOI 10.1016/S0022-314X(03)00154-9
Bibliographic Information
- Huaning Liu
- Affiliation: Department of Mathematics, Northwest University, Xi’an, Shaanxi, People’s Republic of China
- Email: hnliu@nwu.edu.cn
- Received by editor(s): July 26, 2006
- Received by editor(s) in revised form: January 9, 2007
- Published electronically: December 18, 2007
- Additional Notes: This work was supported by the National Natural Science Foundation of China under Grant No.60472068 and No.10671155; Natural Science Foundation of Shaanxi province of China under Grant No.2006A04; and the Natural Science Foundation of the Education Department of Shaanxi Province of China under Grant No.06JK168.
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1193-1203
- MSC (2000): Primary 11L03, 11L05
- DOI: https://doi.org/10.1090/S0002-9939-07-09075-2
- MathSciNet review: 2367093