Norms of elementary operators
HTML articles powered by AMS MathViewer
- by Hong-Ke Du, Yue-Qing Wang and Gui-Bao Gao
- Proc. Amer. Math. Soc. 136 (2008), 1337-1348
- DOI: https://doi.org/10.1090/S0002-9939-07-09112-5
- Published electronically: December 24, 2007
- PDF | Request permission
Abstract:
Let $A_i$ and $B_i$, $1\leq i\leq n$, be bounded linear operators acting on a separable Hilbert space $\mathcal H$. In this note, we prove that $\sup \{\parallel \!\!\sum _{i=1}^n A_iXB_i\!\!\parallel ~: X\in \mathcal {B(H)}, \parallel \!\!X\!\!\parallel \ \leq 1\}=\sup \{\parallel \!\!\sum _{i=1}^n A_iUB_i\!\!\parallel \ : UU^*=U^*U=I, U\in {\mathcal {B(H)}}\}.$ Moreover, we prove that there exists an operator $X_0$ with $\parallel \!\! X_0\!\!\parallel \ =1$ such that $\parallel \!\!\sum _{i=1}^n A_iX_0B_i\!\!\parallel \ =\sup \{\parallel \!\!\sum _{i=1}^n A_iXB_i\!\!\parallel \ : X\in {\mathcal {B(H)}}, \parallel \!\!X\!\!\parallel \ \leq 1\}$ if and only if there exists a unitary $U_0\in \mathcal {B(H)}$ such that $\parallel \!\!\sum _{i=1}^n A_iU_0B_i\!\!\parallel \ =$ $\sup \{\parallel \!\!\sum _{i=1}^n A_iXB_i\!\!\parallel \ : X\in {\mathcal {B(H)}}, \parallel \!\!X\!\!\parallel \ \leq 1\}.$References
- Man-Duen Choi and Chi-Kwong Li, The ultimate estimate of the upper norm bound for the summation of operators, J. Funct. Anal. 232 (2006), no. 2, 455–476. MR 2200742, DOI 10.1016/j.jfa.2005.07.001
- Guo Xing Ji and Hong Ke Du, Norm attainability of elementary operators and derivations, Northeast. Math. J. 10 (1994), no. 3, 396–400. MR 1319103
- B. P. Duggal, On the range closure of an elementary operator, Linear Algebra Appl. 402 (2005), 199–206. MR 2141084, DOI 10.1016/j.laa.2004.12.019
- B. P. Duggal, Range-kernel orthogonality of the elementary operator $X\to \sum ^n_{i=1}A_iXB_i-X$, Linear Algebra Appl. 337 (2001), 79–86. MR 1856852, DOI 10.1016/S0024-3795(01)00339-1
- Domingo A. Herrero, Approximation of Hilbert space operators. Vol. I, Research Notes in Mathematics, vol. 72, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 676127
- Joseph G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737–747. MR 265952
Bibliographic Information
- Hong-Ke Du
- Affiliation: College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
- Email: hkdu@snnu.edu.cn
- Yue-Qing Wang
- Affiliation: College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
- Email: wangyq@163.com
- Gui-Bao Gao
- Affiliation: College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
- Email: gaoguibao@stu.snnu.edu.cn
- Received by editor(s): May 19, 2006
- Received by editor(s) in revised form: February 12, 2007
- Published electronically: December 24, 2007
- Additional Notes: This research was partially supported by the National Natural Science Foundation of China (10571113).
- Communicated by: Joseph A. Ball
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1337-1348
- MSC (2000): Primary 47B47, 47A30
- DOI: https://doi.org/10.1090/S0002-9939-07-09112-5
- MathSciNet review: 2367107