Generalized bi-circular projections on minimal ideals of operators
HTML articles powered by AMS MathViewer
- by Fernanda Botelho and James Jamison
- Proc. Amer. Math. Soc. 136 (2008), 1397-1402
- DOI: https://doi.org/10.1090/S0002-9939-07-09134-4
- Published electronically: November 28, 2007
- PDF | Request permission
Abstract:
We characterize generalized bi-circular projections on $\mathcal {I}(\mathcal {H}),$ a minimal norm ideal of operators in $\mathcal {B}(\mathcal {H}),$ where $\mathcal {H}$ is a separable infinite dimensional Hilbert space.References
- Ehrhard Behrends, $M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509
- Earl Berkson, Hermitian projections and orthogonality in Banach spaces, Proc. London Math. Soc. (3) 24 (1972), 101–118. MR 295123, DOI 10.1112/plms/s3-24.1.101
- S. J. Bernau and H. Elton Lacey, Bicontractive projections and reordering of $L_{p}$-spaces, Pacific J. Math. 69 (1977), no. 2, 291–302. MR 487416
- Botelho, F. and Jamison, J. E., Generalized bi-circular projections on $\mathcal {C}(\Omega , X)$, Rocky Mountain Journal (to appear).
- Yaakov Friedman and Bernard Russo, Contractive projections on $C_{0}(K)$, Trans. Amer. Math. Soc. 273 (1982), no. 1, 57–73. MR 664029, DOI 10.1090/S0002-9947-1982-0664029-4
- Fleming, R. and Jamison, J., Isometries on Banach Spaces (2003), Chapman & Hall.
- Maja Fošner, Dijana Ilišević, and Chi-Kwong Li, $G$-invariant norms and bicircular projections, Linear Algebra Appl. 420 (2007), no. 2-3, 596–608. MR 2278235, DOI 10.1016/j.laa.2006.08.014
- J. de Groot and R. J. Wille, Rigid continua and topological group-pictures, Arch. Math. 9 (1958), 441–446. MR 101514, DOI 10.1007/BF01898628
- James E. Jamison, Bicircular projections on some Banach spaces, Linear Algebra Appl. 420 (2007), no. 1, 29–33. MR 2277626, DOI 10.1016/j.laa.2006.05.009
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 27, Springer-Verlag, Berlin-New York, 1970. Second printing. MR 0257800
- A. R. Sourour, Isometries of norm ideals of compact operators, J. Functional Analysis 43 (1981), no. 1, 69–77. MR 639798, DOI 10.1016/0022-1236(81)90038-0
- Spain, P. G., Ultrahermitian projections on Banach spaces, preprint (2006).
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
- C. K. Fong and A. R. Sourour, On the operator identity $\sum \,A_{k}XB_{k}\equiv 0$, Canadian J. Math. 31 (1979), no. 4, 845–857. MR 540912, DOI 10.4153/CJM-1979-080-x
- Beata Randrianantoanina, Norm-one projections in Banach spaces, Taiwanese J. Math. 5 (2001), no. 1, 35–95. International Conference on Mathematical Analysis and its Applications (Kaohsiung, 2000). MR 1816130, DOI 10.11650/twjm/1500574888
- L. L. Stachó and B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004), 9–20. MR 2055340, DOI 10.1016/j.laa.2003.11.014
- László L. Stachó and Borut Zalar, Bicircular projections and characterization of Hilbert spaces, Proc. Amer. Math. Soc. 132 (2004), no. 10, 3019–3025. MR 2063123, DOI 10.1090/S0002-9939-04-07333-2
Bibliographic Information
- Fernanda Botelho
- Affiliation: Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
- MR Author ID: 252424
- Email: mbotelho@memphis.edu
- James Jamison
- Affiliation: Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
- Email: jjamison@memphis.edu
- Received by editor(s): October 16, 2006
- Received by editor(s) in revised form: February 15, 2007
- Published electronically: November 28, 2007
- Communicated by: Joseph A. Ball
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1397-1402
- MSC (2000): Primary 47A65; Secondary 47B15, 47B37
- DOI: https://doi.org/10.1090/S0002-9939-07-09134-4
- MathSciNet review: 2367112