The boundary Harnack inequality for infinity harmonic functions in the plane
HTML articles powered by AMS MathViewer
- by John L. Lewis and Kaj Nyström
- Proc. Amer. Math. Soc. 136 (2008), 1311-1323
- DOI: https://doi.org/10.1090/S0002-9939-07-09180-0
- Published electronically: December 6, 2007
- PDF | Request permission
Abstract:
We prove the boundary Harnack inequality for positive infinity harmonic functions vanishing on a portion of the boundary of a bounded domain $\Omega \subset \mathbf R^2$ under the assumption that $\partial \Omega$ is a quasicircle.References
- Gunnar Aronsson, Minimization problems for the functional $\textrm {sup}_{x}\,F(x,\,f(x),\,f^{\prime } (x))$, Ark. Mat. 6 (1965), 33–53 (1965). MR 196551, DOI 10.1007/BF02591326
- Gunnar Aronsson, Minimization problems for the functional $\textrm {sup}_{x}\, F(x, f(x),f^\prime (x))$. II, Ark. Mat. 6 (1966), 409–431 (1966). MR 203541, DOI 10.1007/BF02590964
- Gunnar Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551–561 (1967). MR 217665, DOI 10.1007/BF02591928
- Gunnar Aronsson, On the partial differential equation $u_{x}{}^{2}\!u_{xx} +2u_{x}u_{y}u_{xy}+u_{y}{}^{2}\!u_{yy}=0$, Ark. Mat. 7 (1968), 395–425 (1968). MR 237962, DOI 10.1007/BF02590989
- Gunnar Aronsson, Michael G. Crandall, and Petri Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439–505. MR 2083637, DOI 10.1090/S0273-0979-04-01035-3
- T. Bhattacharaya, A boundary Harnack principle for infinity Laplacian and some related results, preprint.
- E. Barron, C. Evans and R. Jensen, The infinity Laplacian, Aronsson’s equations and their generalizations, preprint.
- Björn Bennewitz and John L. Lewis, On the dimension of $p$-harmonic measure, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 459–505. MR 2173375
- M. G. Crandall, L. C. Evans, and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), no. 2, 123–139. MR 1861094, DOI 10.1007/s005260000065
- L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), no. 4, 621–640. MR 620271, DOI 10.1512/iumj.1981.30.30049
- Vicent Caselles, Jean-Michel Morel, and Catalina Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Process. 7 (1998), no. 3, 376–386. MR 1669524, DOI 10.1109/83.661188
- E. DiBenedetto and Neil S. Trudinger, Harnack inequalities for quasiminima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 295–308 (English, with French summary). MR 778976
- Alexandre Eremenko and John L. Lewis, Uniform limits of certain $A$-harmonic functions with applications to quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 361–375. MR 1139803, DOI 10.5186/aasfm.1991.1609
- F. W. Gehring, Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch. Math.-Verein. 89 (1987), no. 2, 88–103. MR 880189
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), no. 1, 51–74. MR 1218686, DOI 10.1007/BF00386368
- Tero Kilpeläinen and Xiao Zhong, Growth of entire $\scr A$-subharmonic functions, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 181–192. MR 1976839
- Peter Lindqvist and Juan J. Manfredi, The Harnack inequality for $\infty$-harmonic functions, Electron. J. Differential Equations (1995), No. 04, approx. 5 pp.}, review= MR 1322829,
- J. Lewis and K. Nyström, Boundary Behaviour for $p$-Harmonic Functions in Lipschitz and Starlike Lipschitz Ring Domains, to appear in Annales Scientifiques de l’École Normale Supérieure.
- Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian, preprint.
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI 10.1007/BF02391014
Bibliographic Information
- John L. Lewis
- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
- Email: john@ms.uky.edu
- Kaj Nyström
- Affiliation: Department of Mathematics, Umeå University, S-90187 Umeå, Sweden
- Email: kaj.nystrom@math.umu.se
- Received by editor(s): January 16, 2007
- Published electronically: December 6, 2007
- Additional Notes: The first author was partially supported by NSF grant DMS-055228.
- Communicated by: Juha M. Heinonen
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 1311-1323
- MSC (2000): Primary 35J25, 35J70
- DOI: https://doi.org/10.1090/S0002-9939-07-09180-0
- MathSciNet review: 2367105