Amenability of Banach and C$^*$-algebras generated by unitary representations
HTML articles powered by AMS MathViewer
- by Ross Stokke
- Proc. Amer. Math. Soc. 136 (2008), 1477-1487
- DOI: https://doi.org/10.1090/S0002-9939-07-09221-0
- Published electronically: December 18, 2007
- PDF | Request permission
Abstract:
We study the amenability of a locally compact group $G$ in relation to the amenability properties of a variety of $C^*$-algebras and (quantized/dual) Banach algebras naturally associated to a unitary representation of $G$.References
- Gilbert Arsac, Sur l’espace de Banach engendré par les coefficients d’une représentation unitaire, Publ. Dép. Math. (Lyon) 13 (1976), no. 2, 1–101 (French). MR 444833
- Erik Bédos, On the $C^\ast$-algebra generated by the left regular representation of a locally compact group, Proc. Amer. Math. Soc. 120 (1994), no. 2, 603–608. MR 1181157, DOI 10.1090/S0002-9939-1994-1181157-1
- Mohammed E. B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), no. 2, 383–401. MR 1047140, DOI 10.1007/BF01231192
- M. E. B. Bekka, A. T. Lau, and G. Schlichting, On invariant subalgebras of the Fourier-Stieltjes algebra of a locally compact group, Math. Ann. 294 (1992), no. 3, 513–522. MR 1188135, DOI 10.1007/BF01934339
- B. Bekka, P. de la Harpe, and A. Valette, Khazdan’s property (T), Manuscript.
- David P. Blecher, The standard dual of an operator space, Pacific J. Math. 153 (1992), no. 1, 15–30. MR 1145913
- H. G. Dales, F. Ghahramani, and A. Ya. Helemskii, The amenability of measure algebras, J. London Math. Soc. (2) 66 (2002), no. 1, 213–226. MR 1911870, DOI 10.1112/S0024610702003381
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8
- Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- Pierre Eymard, Moyennes invariantes et représentations unitaires, Lecture Notes in Mathematics, Vol. 300, Springer-Verlag, Berlin-New York, 1972 (French). MR 0447969
- J. M. G. Fell and R. S. Doran, Representations of $^*$-algebras, locally compact groups, and Banach $^*$-algebraic bundles. Vol. 1, Pure and Applied Mathematics, vol. 125, Academic Press, Inc., Boston, MA, 1988. Basic representation theory of groups and algebras. MR 936628
- Brian Forrest, Fourier analysis on coset spaces, Rocky Mountain J. Math. 28 (1998), no. 1, 173–190. MR 1639849, DOI 10.1216/rmjm/1181071828
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Eberhard Kaniuth, On the conjugation representation of a locally compact group, Math. Z. 202 (1989), no. 2, 275–288. MR 1013090, DOI 10.1007/BF01215260
- Eberhard Kaniuth and Anthony T. Lau, A separation property of positive definite functions on locally compact groups and applications to Fourier algebras, J. Funct. Anal. 175 (2000), no. 1, 89–110. MR 1774852, DOI 10.1006/jfan.2000.3612
- Eberhard Kaniuth and Annette Markfort, On $C^*$-algebras associated to the conjugation representation of a locally compact group, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2595–2606. MR 1277118, DOI 10.1090/S0002-9947-1995-1277118-X
- Christopher Lance, On nuclear $C^{\ast }$-algebras, J. Functional Analysis 12 (1973), 157–176. MR 0344901, DOI 10.1016/0022-1236(73)90021-9
- Anthony To Ming Lau and Alan L. T. Paterson, Inner amenable locally compact groups, Trans. Amer. Math. Soc. 325 (1991), no. 1, 155–169. MR 1010885, DOI 10.1090/S0002-9947-1991-1010885-5
- Zhong-Jin Ruan, The operator amenability of $A(G)$, Amer. J. Math. 117 (1995), no. 6, 1449–1474. MR 1363075, DOI 10.2307/2375026
- Volker Runde, Lectures on amenability, Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. MR 1874893, DOI 10.1007/b82937
- Volker Runde and Nico Spronk, Operator amenability of Fourier-Stieltjes algebras, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 3, 675–686. MR 2055055, DOI 10.1017/S030500410300745X
- Ross Stokke, Amenable representations and coefficient subspaces of Fourier-Stieltjes algebras, Math. Scand. 98 (2006), no. 2, 182–200. MR 2243701, DOI 10.7146/math.scand.a-14990
Bibliographic Information
- Ross Stokke
- Affiliation: Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Canada R3B 2E9
- Email: r.stokke@uwinnipeg.ca
- Received by editor(s): July 26, 2006
- Published electronically: December 18, 2007
- Additional Notes: This research was supported by NSERC grant 298444-04
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1477-1487
- MSC (2000): Primary 22D10, 22D25, 43A30
- DOI: https://doi.org/10.1090/S0002-9939-07-09221-0
- MathSciNet review: 2367122