Periodic solutions of singular systems without the strong force condition
HTML articles powered by AMS MathViewer
- by Daniel Franco and Pedro J. Torres
- Proc. Amer. Math. Soc. 136 (2008), 1229-1236
- DOI: https://doi.org/10.1090/S0002-9939-07-09226-X
- Published electronically: December 27, 2007
- PDF | Request permission
Abstract:
We present sufficient conditions for the existence of at least a non-collision periodic solution for singular systems under weak force conditions. We deal with two different types of systems. First, we assume that the system is generated by a potential, and then we consider systems without such hypothesis. In both cases we use the same technique based on Schauder fixed point theorem. Recent results in the literature are significantly improved.References
- Shinji Adachi, Non-collision periodic solutions of prescribed energy problem for a class of singular Hamiltonian systems, Topol. Methods Nonlinear Anal. 25 (2005), no. 2, 275–296. MR 2154429, DOI 10.12775/TMNA.2005.014
- Shinji Adachi, Kazunaga Tanaka, and Masahito Terui, A remark on periodic solutions of singular Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl. 12 (2005), no. 3, 265–274. MR 2186332, DOI 10.1007/s00030-003-1069-y
- Antonio Ambrosetti and Vittorio Coti Zelati, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, vol. 10, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1267225, DOI 10.1007/978-1-4612-0319-3
- Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- Daniel Franco and J. R. L. Webb, Collisionless orbits of singular and non singular dynamical systems, Discrete Contin. Dyn. Syst. 15 (2006), no. 3, 747–757. MR 2220746, DOI 10.3934/dcds.2006.15.747
- William B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113–135. MR 377983, DOI 10.1090/S0002-9947-1975-0377983-1
- Daqing Jiang, Jifeng Chu, and Meirong Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations 211 (2005), no. 2, 282–302. MR 2125544, DOI 10.1016/j.jde.2004.10.031
- A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc. 99 (1987), no. 1, 109–114. MR 866438, DOI 10.1090/S0002-9939-1987-0866438-7
- Xiaoning Lin, Daqing Jiang, Donal O’Regan, and Ravi P. Agarwal, Twin positive periodic solutions of second order singular differential systems, Topol. Methods Nonlinear Anal. 25 (2005), no. 2, 263–273. MR 2154428, DOI 10.12775/TMNA.2005.013
- Robert H. Martin Jr., Nonlinear operators and differential equations in Banach spaces, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR 0492671
- Poincaré H., Sur les solutions périodiques et le priciple de moindre action, C.R. Math. Acad. Sci. Paris 22 (1896) 915–918.
- Dingbian Qian and Pedro J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal. 36 (2005), no. 6, 1707–1725. MR 2178218, DOI 10.1137/S003614100343771X
- Miguel Ramos and Susanna Terracini, Noncollision periodic solutions to some singular dynamical systems with very weak forces, J. Differential Equations 118 (1995), no. 1, 121–152. MR 1329405, DOI 10.1006/jdeq.1995.1069
- Pedro J. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations 232 (2007), no. 1, 277–284. MR 2281196, DOI 10.1016/j.jde.2006.08.006
- Pedro J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations 190 (2003), no. 2, 643–662. MR 1970045, DOI 10.1016/S0022-0396(02)00152-3
- Pedro J. Torres and Meirong Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Math. Nachr. 251 (2003), 101–107. MR 1960807, DOI 10.1002/mana.200310033
- Meirong Zhang, Periodic solutions of damped differential systems with repulsive singular forces, Proc. Amer. Math. Soc. 127 (1999), no. 2, 401–407. MR 1637460, DOI 10.1090/S0002-9939-99-05120-5
Bibliographic Information
- Daniel Franco
- Affiliation: Departamento de Matemática Aplicada, UNED, ETSI Industriales, c/ Juan del Rosal 12, 28040 Madrid, Spain
- Email: dfranco@ind.uned.es
- Pedro J. Torres
- Affiliation: Universidad de Granada, Departamento de Matemática Aplicada, 18071 Granada, Spain
- MR Author ID: 610924
- ORCID: 0000-0002-1243-7440
- Email: ptorres@ugr.es
- Received by editor(s): August 17, 2006
- Published electronically: December 27, 2007
- Additional Notes: The first author was supported by D.G.I. MTM2004-06652-C03-03, Ministerio de Educación y Ciencia, Spain.
The second author was supported by D.G.I. MTM2005-03483, Ministerio de Educación y Ciencia, Spain. - Communicated by: Carmen C. Chicone
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1229-1236
- MSC (2000): Primary 37J45, 34C25, 34B16
- DOI: https://doi.org/10.1090/S0002-9939-07-09226-X
- MathSciNet review: 2367097