The heat kernel on H-type groups
HTML articles powered by AMS MathViewer
- by Qiaohua Yang and Fuliu Zhu
- Proc. Amer. Math. Soc. 136 (2008), 1457-1464
- DOI: https://doi.org/10.1090/S0002-9939-07-09257-X
- Published electronically: December 21, 2007
- PDF | Request permission
Abstract:
In this paper we present an explicit calculation of the heat kernel for the sub-Laplacian on an H-type group $G$ by using irreducible unitary representations of $G$ and the heat kernel for the associated Hermite operator.References
- F. Astengo, M. Cowling, B. Di Blasio, and M. Sundari, Hardy’s uncertainty principle on certain Lie groups, J. London Math. Soc. (2) 62 (2000), no. 2, 461–472. MR 1783638, DOI 10.1112/S0024610700001186
- Richard Beals, Bernard Gaveau, and Peter C. Greiner, Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians. I, Bull. Sci. Math. 121 (1997), no. 1, 1–36. MR 1431098
- A. Bonfiglioli and F. Uguzzoni, Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), no. 1, 161–215. MR 2027639, DOI 10.1016/S0022-1236(03)00138-1
- Der Chen Chang and Jing Zhi Tie, A note on Hermite and subelliptic operators, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 803–818. MR 2156956, DOI 10.1007/s10114-004-0336-0
- Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. MR 1070979
- Jacek Cygan, Heat kernels for class $2$ nilpotent groups, Studia Math. 64 (1979), no. 3, 227–238. MR 544727, DOI 10.4064/sm-64-3-227-238
- Bernard Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), no. 1-2, 95–153. MR 461589, DOI 10.1007/BF02392235
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), no. 2, 165–173. MR 418257, DOI 10.4064/sm-56-2-165-173
- Aroldo Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), no. 1, 147–153. MR 554324, DOI 10.1090/S0002-9947-1980-0554324-X
- Wolfgang Staubach, Wiener path integrals and the fundamental solution for the Heisenberg Laplacian, J. Anal. Math. 91 (2003), 389–400. MR 2037416, DOI 10.1007/BF02788796
- Sundaram Thangavelu, An introduction to the uncertainty principle, Progress in Mathematics, vol. 217, Birkhäuser Boston, Inc., Boston, MA, 2004. Hardy’s theorem on Lie groups; With a foreword by Gerald B. Folland. MR 2008480, DOI 10.1007/978-0-8176-8164-7
- Fuliu Zhu, The heat kernel and the Riesz transforms on the quaternionic Heisenberg groups, Pacific J. Math. 209 (2003), no. 1, 175–199. MR 1973940, DOI 10.2140/pjm.2003.209.175
Bibliographic Information
- Qiaohua Yang
- Affiliation: School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, People’s Republic of China
- Address at time of publication: Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, People’s Republic of China
- MR Author ID: 761680
- Email: qaohyang2465@yahoo.com.cn
- Fuliu Zhu
- Affiliation: School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, People’s Republic of China
- Email: flzhu@whu.edu.cn
- Received by editor(s): March 30, 2006
- Published electronically: December 21, 2007
- Additional Notes: The first author was supported by the National Science Foundation of China under grant number 10571044.
- Communicated by: David S. Tartakoff
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1457-1464
- MSC (2000): Primary 22E25, 35A08
- DOI: https://doi.org/10.1090/S0002-9939-07-09257-X
- MathSciNet review: 2367120