On Generic differential $\operatorname {SO}_n$-extensions
HTML articles powered by AMS MathViewer
- by Lourdes Juan and Arne Ledet
- Proc. Amer. Math. Soc. 136 (2008), 1145-1153
- DOI: https://doi.org/10.1090/S0002-9939-07-09314-8
- Published electronically: December 27, 2007
- PDF | Request permission
Abstract:
Let $\mathcal C$ be an algebraically closed field with trivial derivation and let $\mathcal F$ denote the differential rational field $\mathcal C\langle Y_{ij}\rangle$, with $Y_{ij}$, $1\leq i\leq n-1$, $1\leq j\leq n$, $i\leq j$, differentially independent indeterminates over $\mathcal C$. We show that there is a Picard-Vessiot extension $\mathcal E\supset \mathcal F$ for a matrix equation $X’=X\mathcal A(Y_{ij})$, with differential Galois group $\operatorname {SO}_n$, with the property that if $F$ is any differential field with field of constants $\mathcal C$, then there is a Picard-Vessiot extension $E\supset F$ with differential Galois group $H\leq \operatorname {SO}_n$ if and only if there are $f_{ij}\in F$ with $\mathcal A(f_{ij})$ well defined and the equation $X’=X\mathcal A(f_{ij})$ giving rise to the extension $E\supset F$.References
- A. K. Bhandari and N. Sankaran, Generic differential equations and Picard-Vessiot extensions, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), no. 4, 353–358. MR 1345605
- John H. Conway and Derek A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003. MR 1957212
- Lawrence Goldman, Specialization and Picard-Vessiot theory, Trans. Amer. Math. Soc. 85 (1957), 327–356. MR 87645, DOI 10.1090/S0002-9947-1957-0087645-5
- Frank Grosshans, Observable groups and Hilbert’s fourteenth problem, Amer. J. Math. 95 (1973), 229–253. MR 325628, DOI 10.2307/2373655
- Lourdes Juan, Pure Picard-Vessiot extensions with generic properties, Proc. Amer. Math. Soc. 132 (2004), no. 9, 2549–2556. MR 2054779, DOI 10.1090/S0002-9939-04-07390-3
- Lourdes Juan, Generic Picard-Vessiot extensions for connected-by-finite groups, J. Algebra 312 (2007), no. 1, 194–206. MR 2320454, DOI 10.1016/j.jalgebra.2007.02.043
- L. Juan and A. Ledet, Equivariant vector fields on non-trivial $\operatorname {SO}_n$-torsors and Differential Galois Theory, J. Algebra (2007), doi:10.1016/j.jalgebra.2007.01.005
- Lourdes Juan and Andy R. Magid, Generic rings for Picard-Vessiot extensions and generic differential equations, J. Pure Appl. Algebra 209 (2007), no. 3, 793–800. MR 2298857, DOI 10.1016/j.jpaa.2006.08.014
- Gregor Kemper, Generic polynomials are descent-generic, Manuscripta Math. 105 (2001), no. 1, 139–141. MR 1885819, DOI 10.1007/s002290170015
- M. V. Kondratieva, A. B. Levin, A. V. Mikhalev, and E. V. Pankratiev, Differential and difference dimension polynomials, Mathematics and its Applications, vol. 461, Kluwer Academic Publishers, Dordrecht, 1999. MR 1676955, DOI 10.1007/978-94-017-1257-6
- Andy R. Magid, Lectures on differential Galois theory, University Lecture Series, vol. 7, American Mathematical Society, Providence, RI, 1994. MR 1301076, DOI 10.1090/ulect/007
- Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772, DOI 10.1007/978-3-642-55750-7
- Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. MR 1466966, DOI 10.1007/978-3-642-59141-9
- Michael F. Singer, Algebraic relations among solutions of linear differential equations: Fano’s theorem, Amer. J. Math. 110 (1988), no. 1, 115–143. MR 926740, DOI 10.2307/2374541
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
Bibliographic Information
- Lourdes Juan
- Affiliation: Department of Mathematics, Texas Tech University, MS 1042, Lubbock, Texas 79409
- Email: lourdes.juan@ttu.edu
- Arne Ledet
- Affiliation: Department of Mathematics, Texas Tech University, MS 1042, Lubbock, Texas 79409
- Email: arne.ledet@ttu.edu
- Received by editor(s): July 5, 2006
- Published electronically: December 27, 2007
- Communicated by: Martin Lorenz
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 1145-1153
- MSC (2000): Primary 12H05; Secondary 12F12, 20G15
- DOI: https://doi.org/10.1090/S0002-9939-07-09314-8
- MathSciNet review: 2367088