CONVEXITY AND THE EXTERIOR INVERSE PROBLEM OF POTENTIAL THEORY

STEPHEN J. GARDINER AND TOMAS SJÖDIN

(Communicated by Juha M. Heinonen)

Abstract. Let Ω_1 and Ω_2 be bounded solid domains such that their associated volume potentials agree outside $\Omega_1 \cup \Omega_2$. Under the assumption that one of the domains is convex, it is deduced that $\Omega_1 = \Omega_2$.

1. Introduction

For any (positive Radon) measure μ with compact support in Euclidean space \mathbb{R}^N ($N \geq 2$), we define the usual potential

$$U^\mu(x) = \int U_y(x) d\mu(y) \quad (x \in \mathbb{R}^N),$$

where $U_y(x) = |x - y|^{2-N}$ if $N \geq 3$, and $U_y(x) = \log (1/|x - y|)$ if $N = 2$. In the case where μ is the restriction of volume measure λ to a bounded Borel set A, we will write U^A in place of $U^{\lambda|A}$. A domain Ω in Euclidean space \mathbb{R}^N is called solid if it is bounded, $\overline{\Omega} \setminus \Omega = \emptyset$ and the complement, Ω^c, of Ω is connected.

A long-standing open question, known as the exterior inverse problem of potential theory, asks: if $U^{\Omega_1} = U^{\Omega_2}$ on $(\Omega_1 \cup \Omega_2)^c$, where Ω_1 and Ω_2 are solid domains, does it follow that $\Omega_1 = \Omega_2$? (The answer is “no” if we omit the word “solid”, as is obvious from the example of a ball and a suitably chosen concentric annular domain of equal measure.) An early result on this problem, due to Novikov [6], says that the answer is “yes” if we require both Ω_1 and Ω_2 to be convex (or, more generally, starlike with respect to a common point). More recently, Shahgholian [7] proved that it is enough here for $\Omega_1 \cap \Omega_2$ to be convex. Kondraškov [5] has shown that the answer to the question is also “yes” if one of the domains is a ball or an ellipsoid (cf. [1]; an elegant elementary proof for the case of a ball may be found in [9]). In this paper we show that convexity of one of the domains is sufficient to arrive at a positive answer.

Theorem 1. Let Ω_1 be a solid domain and Ω_2 be a convex domain, and let ν be a measure such that $\nu \geq \lambda|_{\Omega_2}$ and $\nu(\Omega_2^c) = 0$. If $U^{\Omega_1} = U^{\nu}$ on $(\Omega_1 \cup \Omega_2)^c$, then $\Omega_2 \subseteq \Omega_1$.

Corollary 2. Let Ω_1 be a solid domain and Ω_2 be a convex domain. If $U^{\Omega_1} = U^{\Omega_2}$ on $(\Omega_1 \cup \Omega_2)^c$, then $\Omega_1 = \Omega_2$.

Received by the editors February 19, 2007.
2000 Mathematics Subject Classification. Primary 31B20.
This research was supported by Science Foundation Ireland under Grant 06/RFP/MAT057.

©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1699
There is no implication in either direction between the corollary and the result of Shahgholian mentioned above. However, it is worth noting that Theorem 1 only imposes an additional hypothesis on one of the domains in question. Zalcman [9] has conjectured a stronger version of Corollary 2 in which U^{Ω_1} and U^{Ω_2} are only assumed to agree near infinity. The proof of Theorem 1 will be given in Section 3, following some preliminary material in Section 2 concerning the notion of partial balayage, on which it is based.

2. Partial balayage

Let $a_N = \sigma_N \max\{1, N - 2\}$, where σ_N denotes the surface area of the unit sphere in \mathbb{R}^N, and let $q(x) = a_N |x|^2 / (2N)$. Thus $U^\Omega + q$ is harmonic on Ω, for any bounded open set Ω. If μ is a measure with compact support, it is easy to see that there is a greatest subharmonic minorant s_μ, say, of $U^\mu + q$ on \mathbb{R}^N (using Theorem 3.7.5 of [2], for example). We need the following facts (see [3], [8]).

Theorem A. Let μ and s_μ be as above. Then:

(i) the function $s_\mu - q$ can be expressed as U^{f_λ}, where $f : \mathbb{R}^N \to [0, 1]$ is a Borel function with compact support;

(ii) the open set $\omega(\mu) = \{U^\mu > U^{f_\lambda}\}$ is bounded, and $f_\lambda = \lambda|_{\omega(\mu)} + \mu|_{\omega(\mu)^c}$.

The measure f_λ arising in Theorem A is called the *partial balayage* of μ onto λ, and will be denoted by $\tilde{\mu}$. Obviously, $U^{\tilde{\mu}} \leq U^\mu$. The decomposition formula in (ii) arises from the fact that s_μ must be harmonic on $\omega(\mu)$, by standard balayage arguments. It is clear from the lemma that if we define $\Omega(\mu)$ to be the largest open set Ω for which $(\lambda - \tilde{\mu})(\Omega) = 0$, then $\Omega(\mu)$ is bounded and contains $\omega(\mu)$, and

$$
(1) \quad \tilde{\mu} = \lambda|_{\omega(\mu)} + \mu|_{\omega(\mu)^c}.
$$

The next result is a generalization of a fact due to Gustafsson (see pp. 205-206 of [3]).

Lemma 3. Let Ω_1 and Ω_2 be bounded open sets, where $\lambda(\partial \Omega_2) = 0$, and let ν be a measure such that $\nu(\Omega_1) = 0$, $\nu(\Omega_2^c) = 0$, and U^ν is continuous on Ω_2. If $U^\nu = U^{\Omega_1}$ on $(\Omega_1 \cup \Omega_2)^c$, and we denote by η the measure satisfying $U^\eta = \min\{U^{\Omega_1}, U^\nu\}$, then

$$
\eta = \lambda|_{\Omega(\eta)}.
$$

Proof. Let $\Omega = \Omega(\eta)$ and

$$
D_1 = \{U^{\Omega_1} < U^\nu\}, \quad D_2 = \{U^{\Omega_1} > U^\nu\}, \quad S = \{U^{\Omega_1} = U^\nu\},
$$

$$
A = (\Omega_1 \cap D_1) \cup (\Omega_2 \cap D_2) \cup (\Omega_1 \cap \Omega_2).
$$

Then A is an open set. Since $U^\eta = U^{\Omega_1}$ on D_1, $U^\eta = U^\nu$ on D_2, and

$$
(2) \quad U^\eta = U^{\Omega_1 \cap \Omega_2} + \min\{U^{\Omega_1 \setminus \Omega_2}, U^\nu - \lambda|_{\Omega_1 \cap \Omega_2}\},
$$

we see that $\eta|_A \geq \lambda|_A$ and so $\tilde{\eta}|_A = \lambda|_A$. It follows that $A \subseteq \Omega$. Since $(\Omega_1 \cup \Omega_2)^c \subseteq S$, we see that

$$
(3) \quad \Omega^c \subseteq A^c \subseteq A_1 \cup A_2 \cup \partial \Omega_2,
$$

where

$$
A_1 = \Omega_1^c \cap (D_1 \cup S) \quad \text{and} \quad A_2 = \Omega_2^c \cap (D_2 \cup S).
$$

On $A_1 \cap \Omega^c$ we have $U^{\tilde{\eta}} = U^\eta = U^{\Omega_1}$, and since $U^{\tilde{\eta}}$ and U^{Ω_1} both belong to the Sobolev space $W^{2,2}_{\text{loc}}(\mathbb{R}^N)$, we have $\tilde{\eta}(A_1 \cap \Omega^c) = \lambda|_{\Omega_1}(A_1 \cap \Omega^c) = 0$. Since
\[U^\eta = U^\nu = U^\omega \] on \(A_2 \cap \Omega^c \) and \(U^\nu \) is harmonic on \(\overline{\Omega^c} \), we similarly have \(\overline{\eta(A_2 \cap \Omega^c)} = 0 \). Hence \(\overline{\eta(\Omega^c)} = 0 \), in view of (3) and the fact that \(\lambda(\partial\Omega_2) = 0 \). The result now follows by applying (1) to the measure \(\eta \).

We denote a typical point \(x \) of \(\mathbb{R}^N \) by \((x', x_N) \), where \(x' \in \mathbb{R}^{N-1} \) and \(x_N \in \mathbb{R} \), and define

\[W_+ = \{ x : x_N > 0 \}, \quad W_- = \{ x : x_N < 0 \} \quad \text{and} \quad H = \{ x : x_N = 0 \}. \]

The following result is due to Gustafsson and Sakai [4]. We give a short proof here for the sake of completeness.

Lemma 4. Let \(\mu \) be a measure with compact support contained in \(W_- \cup H \) and let \(A = \{ x' : (x', 0) \in \Omega(\mu) \cap H \} \). Then there is a continuous function \(g : A \to (0, \infty) \), continuously vanishing at \(\partial A \), such that

\[
\Omega(\mu) \cap W_+ = \{ (x', x_N) : x' \in A \text{ and } 0 < x_N < g(x') \}.
\]

Proof. Let \(u = U^\mu - U^\overline{\mu} \). Thus \(u \geq 0 \). We may assume, by means of a limiting argument, that \(\text{supp} \mu \subset W_- \), and so \(u \) is continuously differentiable on an open set containing \(W_+ \cup H \). Let \(\overline{\mu}(x) = u(x', -x_N) \). We note that \(U^\mu - \overline{\mu} + q \) is subharmonic on \(W_+ \), and \(\overline{\mu} + q \) is subharmonic on all of \(\mathbb{R}^N \). Since

\[U^\mu - \overline{\mu} + q = U^\mu - u + q = U^\overline{\mu} + q \quad \text{on} \ H, \]

the function

\[v = \begin{cases} \max\{U^\mu - \overline{\mu} + q, U^\overline{\mu} + q\} & \text{on } W_+, \\ U^\overline{\mu} + q & \text{on } W_- \cup H \end{cases} \]

is a subharmonic minorant of \(U^\mu + q \). Thus \(v \leq U^\overline{\mu} + q \) by the definition of \(U^\overline{\mu} \), whence \(U^\mu - \overline{\mu} \leq U^\overline{\mu} \) on \(W_+ \) and so \(u \leq \overline{\mu} \) there. It follows that \(\partial u / \partial x_N \leq 0 \) on \(H \).

Let \(\Omega_+ = \Omega(\mu) \cap W_+ \). Since \(u = 0 \) on \(\omega(\mu)^c \), and so on \(\Omega(\mu)^c \), and since every point of \(\partial \Omega(\mu) \) is the limit of some sequence of points of Lebesgue density of \(\Omega(\mu)^c \), we see that \(|\nabla u| = 0 \) on \(\partial \Omega_+ \cap W_+ \). We note from (1) that \(\Delta u \) is constant in \(\Omega_+ \), so the function \(\partial u / \partial x_N \) is harmonic there, and hence \(\partial u / \partial x_N \leq 0 \) on \(\Omega_+ \), by the maximum principle. Further, since \(u \) is nonconstant in each component of \(\Omega_+ \), and \(u = 0 \) on \(W_+ \setminus \Omega_+ \), we actually have \(\partial u / \partial x_N < 0 \) on \(\Omega_+ \). We now define

\[g(x') = \sup\{ t > 0 : (x', t) \in \Omega_+ \} \quad (x' \in A). \]

Clearly \(\Omega(\mu) \cap W_+ \) lies under the graph of \(g \). Conversely, if \((x', x_N) \) lies under the graph of \(g \) and \(x_N > 0 \), then \(u(x', x_N) > 0 \) and so \((x', x_N) \in \omega(\mu) \subseteq \Omega(\mu) \). Thus (4) holds.

It remains to check that \(g \) is continuous and vanishes at \(\partial A \). In fact, since \(\Omega(\mu) \) is open and

\[\{ x' : g(x') > c \} = \{ x' : (x', c) \in \Omega(\mu) \} \quad (c > 0), \]

it is clear that \(g \) is lower semicontinuous. On the other hand, if we apply the result of the previous paragraph with hyperplanes of varying orientation, we see that each point of \(\partial \Omega_+ \cap W_+ \) is the vertex of a vertical cone lying in \(\Omega(\mu)^c \), and so \(g \) is also upper semicontinuous. In fact, \(g \) continuously vanishes at \(\partial A \), since we can apply the preceding reasoning with \(H \) replaced by a slightly lower hyperplane. □
3. Proof of Theorem 1

Let \(\Omega_1, \Omega_2 \) and \(\nu \) be as in the statement of Theorem 1. We begin by observing that we may assume \(U^\nu \) to be continuous on \(\Omega_2 \). To see this, let \((\omega_n) \) be an increasing sequence of regular open sets with union \(\Omega_2 \) such that \(\omega_n \subset \omega_{n+1} \) for each \(n \), and let \(\nu_n = (\nu - \lambda)|_{\omega_n \setminus \omega_{n-1}} \), where \(\omega_0 = \emptyset \). If we define \(u_n = U^{\nu_n} \) on \(\omega_{n+1} \), and extend \(u_n \) to \(\mathbb{R}^N \) by solving the Dirichlet problem on \(\omega_{n+1} \), then the function \(U^{\Omega_2} + \sum u_n \) is continuous on \(\Omega_2 \), equals \(U^\nu \) on \(\Omega_2 \) and can be expressed as \(U' \) with \(\nu' \geq \lambda|_{\Omega_2} \) and \(\nu'(\Omega_2) = 0 \).

Now let \(\eta \) be as in Lemma 3, and let \(\Omega = \Omega(\eta) \). As we noted earlier, it follows from (2) that \(\Omega_1 \cap \Omega_2 \subseteq \Omega \). We will suppose that

\[
(5) \quad \lambda(\Omega_1 \setminus \Omega) > 0
\]

with a view to reaching a contradiction.

Let \(D = \Omega \cup \Omega_2 \). Our first step is to show that

\[
(6) \quad U^\eta = U^\Omega = U^\nu \quad \text{on} \quad D^c.
\]

To see this, we note that \(U^\eta = U^\nu \) on \(\Omega^c \), since \(\omega(\eta) \subseteq \Omega \), and \(U^\eta = U^\Omega \), by Lemma 3. On \(D^c \setminus \Omega_1 \), which coincides with \((\Omega_1 \cup \Omega_2)^c \cap \Omega^c \), we thus have \(U^\nu = U^{\Omega_1} = U^\eta = U^\eta \). The nonnegative function \(U^{\Omega_1} - U^\Omega \) is superharmonic on \(\Omega_1 \). It cannot be constant on \(\Omega_1 \), in view of (5), so it is strictly positive there. Hence \(U^{\Omega_1} > U^\Omega = U^\eta = U^\nu \) on \(D^c \cap \Omega_1 \). We have now proved (6).

Let

\[
E = \Omega_2 \setminus \Omega \quad \text{and} \quad \mu = \nu + \lambda|_E,
\]

whence \(D = \Omega \cup E \). Clearly \(U^\Omega = U^\eta \leq U^\nu \leq U^\mu \), so

\[
(7) \quad U^D = U^\Omega + U^E \leq U^\nu + U^E = U^\mu,
\]

and from (6) we see that

\[
(8) \quad U^D = U^\Omega + U^E = U^\nu + U^E = U^\mu \quad \text{on} \quad D^c.
\]

We note from (7) that \(U^D + q \) is a subharmonic minorant of \(U^\mu + q \), so \(U^D \leq U^\mu \leq U^\nu \). The nonnegative function \(U^\mu - U^D \) vanishes on \(D^c \), by (8), and hence on \(\mathbb{R}^N \), since it is subharmonic on \(D \). Thus

\[
(9) \quad \tilde{\mu} = \lambda|_D \quad \text{and} \quad D \subseteq \Omega(\mu).
\]

Further,

\[
0 = (\lambda - \tilde{\mu})(\Omega(\mu)) = \lambda(\Omega(\mu) \setminus D) \geq \lambda((\Omega(\mu) \setminus \Omega_2) \setminus D) = (\lambda - \tilde{\eta})(\Omega(\mu) \setminus \Omega_2),
\]

so \(\Omega(\mu) \setminus \Omega_2 \subseteq \Omega \subseteq D \). In view of (9) we thus see that

\[
(10) \quad D \setminus \Omega_2 = \Omega(\mu) \setminus \Omega_2.
\]

We now claim that \(\partial \Omega_1 \subset \partial D \). For, if this were not the case, we could choose an open ball \(B \subset \overline{D} \) that intersects \(\partial \Omega_1 \). Since \(U^{\Omega_1} \geq U^\eta \geq U^\nu \) on \(D^c \), by (6), the function \(U^{\Omega_1} - U^\nu \), which is nonnegative and superharmonic on \(B \) and attains the value 0 on \(B \setminus \Omega_1 \), must vanish identically on \(B \). This leads to a contradiction, as \(B \cap \Omega_1 \neq \emptyset \).

Next we claim that \(\Omega_1 \setminus \Omega_2 \subset D \). For, if there were a point \(y \in \Omega_1 \setminus (D \cup \Omega_2) \), then we could assume (by choosing a suitable coordinate system) that the closest point of \(\Omega_2 \) to \(y \) is 0, and \(y = (y', |y|) \). Let \(y_0 = (y', t_0) \), where \(t_0 = \sup \{ t : (y', t) \in \Omega_1 \} \). Then \(t_0 > |y| \) and \(y_0 \in \partial \Omega_1 \subset \overline{D} \subseteq \Omega(\mu) \), by the preceding paragraph and (9).
Also, \(y \in \Omega(\mu)^c \), by (10). Since \(\text{supp} \mu = \overline{\Omega_2} \subset W^- \cup H \), Lemma 4 now yields the desired contradiction.

In view of the previous paragraph we see that

\[
\lambda(\Omega_1 \setminus \Omega) = \lambda((\Omega_1 \cup \Omega_2) \setminus D) \leq \lambda(\partial \Omega_2) = 0,
\]

which contradicts (5). Thus \(\lambda(\Omega_1 \setminus \Omega) = 0 \) and so \(\Omega_1 \subseteq \Omega \), by the definition of \(\Omega \). Since \(\lambda(\Omega_1) = \lambda(\Omega) \), and \(\Omega_1 \) is solid, it follows that \(\Omega = \Omega_1 \). Hence \(U^\nu - U^\Omega \) is a nonnegative superharmonic function on \(\overline{\Omega} \) which attains the value 0, so \(U^\nu = U^\Omega = U^{\Omega_1} \) there, and therefore \(\lambda(\Omega_2 \setminus \Omega_1) = 0 \). It follows that \(\Omega_2 \subseteq \overline{\Omega_1} \), and so \(\Omega_2 \subseteq (\Omega_1)^c = \Omega_1 \), as required.

The corollary is immediate, since \(\lambda(\Omega_1) = \lambda(\Omega_2) \) in this case.

References

School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

E-mail address: stephen.gardiner@ucd.ie

School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

E-mail address: tomas.sjodin@ucd.ie